
OTIC FILE COpy "(

00

~OF

DTIC
tELECTE

JAN 0 7 1991

Applovet 'w ~~tio~~

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio



AFIT/GCS/ENG/90D-06

DTIC
JAN 0'7 1991

ACCESS AND OPERATOR METHODS FOR
TIlE TRITON NESTED RELATIONAL

DATABASE SYSTEM

THESIS

Tina Marie Harvey
Captain, USAF

AFIT/GCS/ENG/90D-06

Approved for public release; distribution unlimited



AFIT/GCS/ENG/90D-06

ACCESS AND OPERATOR METHODS FOR THE

TRITON NESTED RELATIONAL DATABASE SYSTEM

THESIS
J

Presented to the Faculty of the School of Engineering

of the Air For- Tn -itute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science (Computer Science)

Accesion For.

NTIS CR A & I

U , OtJced 

Tina Marie Harvey, B.S. ................... ....

Captain, USAF By .................................................Di.t ib..tioI

Availabiiity Codes

Avaii a .dlor
December 13, 1990 Dit Sp,.cial

-A~
Approved for public release; distribution unlimited



Acknowledgments

Before I recognize the people who significantly contributed to this research effort, I

must first give praise to God -for His comforting love and righteousness. I would like to

thank my instructors at AFIT for providing me a solid background for this- research. For

guiding and reviewing my work, I would like to acknowledge the members ofzmy committee,

Captain Eric Hanson and Dr. Gary Lamont. I am especially indebted to my advisor, Major

Mark Roth, who encouraged me and directed this research effort. His superb guidance and

invaluable knowledge in the realm of database research and nested relational theory played

a critical role in the success of this thesis I would like to thank Major Martin Stytz, my

reader, -for-never failing to help- and encourage it, ; his enthusiasm is only equ alled by his

love for red pens. For providing further informatiu:i and help, I would- like to recognize

Captain Craig Schnepf, my partner on the Triton project. I would also -like to thank

my roommate, Captain Nagin Ahmed, for always being there for me-these last eighteen

months. Of-course, I cannot say thank you enough to my husband, Michael, whose love

and selflessness has taught me the greatest lesson -of all.

Tina Marie Harvey

ii



Table of Contents

Page

Acknowledgments... .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . ....

Table of-Contents.... .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . .....

List of Figures .. .. .. .. .. .. ... .. ... .. ... .. ... .. ... ... viii

List of Tables .. .. .. .. .. ... .. ... ... .. ... .. ... .. ....... x

Abstract. .. .. .. .. .. ... .. ... .. ... .. ... .. ... .. ...... xi

I. Introduction. .. .. .. .. .. ... .. ... .. ... .. ... .. ..... 1-1

1.1 Overview .. .. .. .. .. .. ... .. ... .. ... .. ..... 1-1

1.2 Background .. .. .. .. .. .. .. .. ... .. ... .. ..... 1-2

1.2.1 Relational- Database Model .. .. .. .. .. .. .. .... 1-2 J

1.2.2 The Nested Relational- Model.. .. .. .. .. .. ..... 1-2

1.3 Purpose of Thesis .. .. .. .. .. .. ... .. ... .. ..... 1-4

1.3.1 The Triton-Nested Relational Database-System Archi-

tecture. .. .. .. .. .. .. .. .... .. .. .. ..... 1-5

1.3.2 Algebra Used in the Triton System .. .. .. .. ..... 1-6

1.4 Scope-of this Research/Objective .. .. .. .. .. .. .. ..... 1-6

1.5 Methodology/Approach. .. .. .. .. .. .... .. .. .. .... 1-8

1.6 Materials and Equipment. .. .. .. .. .. .. ... .. ..... 1-8

1.7 Outline of this Document. .. .. .. .. .. .. ... .. ..... 1-9

II. Overview of the Nested Relational Model and the EXODUS Extensible

Database- System,. .. .. .. .. ... .. ... .. ... .. ... .. ... ..... 2-1

2.1 Overview .. .. .. .. .. .. ... .. ... .. ... .. ..... 2-1

2.2 Impetus for the Development of-the Nested Relational Model- 2-1



Page

2.3 Historical Development of the Nested Relational Model . . . 2-2

2.3.1 The Relational Model ....................... 2-2

2.3.2 Introduction of Set-Valued Attributes ......... .... 2-2

2.3.3 Introduction of Relation-Valued Attributes ...... ... 2-3

2.4 Notable Advances in Nested Relational Database Theory . 2-6

2.4.1 The SQL/NF Query Language ............. .... 2-6

2.4.2 Colby Algebra and its Optimization .......... .... 2-7

2.4.3 Indexing Techniques and Access Methods ....... ... 2-7

2.5 Related Work ................................. 2-9

2.5.1 Advanced Information Management Prototype . . . 2-9

2.5.2 Darmstadt Database System ................. 2-9

2.5.3 'The Verso DBMS ......................... 2-10

2.6 EXODUS Extensible Database System ................ . 2-10

2.6.1 EXODUS Tools Used in the Production of the Triton

Nested Database System ..................... 2-11

2.7 Summary ................................... 2-13

III Design and Implementation ................................ 3-1

3.1 Overview ................................... 3-1

3.2 Representation of Nested Relations in Triton ............. 3-2

3.2.1 E Representation of Non-Nested Relations ...... ... 3-2

3.2.2 E Representation of-Nested Relationc ............ 3-2

3.3 Design and Function of Methods ................. . .. 3-5

3.3.1 The Filescan Method ........................ 3-5

3.3.2 The LoopsJoin Method ..................... 3-8

3.3.3 Store-Values Method ....................... 3-12

3.3.4 Modify Method ................ ....... . 3-13

3.3.5 Delete Method .............. ............ .. 3-15

iv



Page

3.4 Code Generator ...... ......................... 3-16

3.4.1 Rationale Behind Design Decisions for the Code Gen-

erator .......... . ................... 3-16

3.4.2 System Catalogs ......................... 3-16

3.4.3 Operation of the Code Generator ........... .... 3-17

3.5 Summary ................................... 3-19

IV. Analysis and Evaluation ................................ 4-1

4.1 Overview ................................... 4-1

4.2 Comparison of the NRM and Relational Representations of the

IDEF0 Language Data ........................... 4-1

4.2.1 Schema Definitions ....................... ... 4-1

4.2.2 Queries Used in this Comparison ............ .... 4-2-

4.2.3 Method of Comparison ..................... 4-2

4.2.4 Comparison of Code Generation Times...... . . 4-3

4.2.5 Comparison of Query Execution Times ........ .... 4-5

4.2.6 Summary of Comparison ...... . . ......... 4-8

4.3 Evaluation of the EXODUS Toolkit in this Research Effort . 4-9

4.3.1 Collections ............................. 4-9

4.3.2 Classes ................................ 4-10

4.3.3 Persistence .............................. 4-10

4.3.4 Data Representation ...................... 4-10

4.3.5 Optimizer Generator ....................... 4-10

4.3.6 Storage Manager .......................... 4-11

4.3.7 Overall Evaluation of the EXODUS Toolkit ...... ... 4-11

4.4 Summary ............................. 4-12

v,



Page

V. Conclusions and Recommendations .. .. .. .. .. ... .. ... ..... 5-1

5.1 Overview .. .. .. .. .. .. ... .. ... .. ... .. ..... 5-1

5.2 Summary of Research. .. .. .. .. .. .. ... . . .. . ....-

5.3 Conclusions .. .. .. .. .. .. .. .. ... .. ... .. ..... 5-2

5.4 Recommendations .. .. .. .. .. .. .. .. .. ... .. ..... 5-3

Appendix A, Colby Relational Algebra .. .. .. .. .. .. .. ...... ... A-1

A.i Select (o) . .. .. .. .. .. .. .. .. .. ... .. ... ..... A-i

A.2 Project (r) .. .. .. .. .. .. .. .. .. .. ... .. ... ... A-2

A.3 Join (N) .. .. .. .. ... .... ... .... .... ... .... A-3

A.4 Nest (V) .. .. .. .. .. .. .. .. ... .. ... .. ... ... A-4

A.5 Unnest (At).. .. .. ..... . .... ..... . .... ........ A-5

Appendix B. Definition of Data Structures .. .. .. .. .. ... .. ..... B-i

B.1 Plan Node. .. .. .. .. .. .. .. .. ... .. ... .. ..... B-i

B.2 Pred Node. .. .. .. .. .. ... .. ... .. ... .. ..... B-2

B.3 List Node. ...... .. .. .. .. .. .. .. .. .. .. ... ... B-3

BA4 Attrdesc Node .. .. .. .. .. .. ... .. ... .. ... ... B-5

Appendix C. Data for the Employees Relation. .. .. .. .. ... .. ... C-i

Appendix D. Data for the Products Relation .. .. .. .. .. ... .. ... D-i

Appendix E. Pilescan Method .. .. ... .. .. .. .. .. .. ... .. ....- i

Appendix F. Loops-.Join Method. .. .. .. .. .. .. ... .. ... ..... F-i

Appendix G. Store-.Values Method..... ... . .. . ..... .. .. . --

Appendix H. Modify Method. .. .. .. .. .. ... .. ... .. ... ... H-i

Appendix I. Delete Method...... ..... . . ... . ... . .. .... . . -i

vi



page

Appendix J. SQL/NF Create Table Definition for the Relational Version of

the IDEFo Language Data .. .. .. .. .. ... .. ... .. ... .. ... .... J-1

Appendix K. SQL/NP Create Table Definition for the Nested- Version of the

IDEFo Language Data. .. .. .. .. ... .. ... .. ... ...... .. ..... K-i

Bibliography .. .. .. .. .. .. ... .. ... .. ... .. ... .. ... .... BIB-i

Vita .. .. .. .. .. .. .. ... .. ... .. ... .. ... .. ... .. ..... VITA-i

vii



List of Figures

Figure Page

1.1. The Flat Employee Relation Without Children ................. 1-3

1.2. The Children Relation ............................ 1-4

1.3. The Nested Employee Relation ............................ 1-4

1.4. The Triton Nested Database System Architecture ................ 1-5

2.1. Representation of a Relational VHDL Database ................. 2-3

2.2. Representation of a VHDL Database with Set-Valued Attributes . . . . 2-4

2.3. Representation of a VHDL-Database with Relation-Valued Attributes . 2-5

2.4. The Triton-Nested Database System Architecture Using EXODUS . . . 2-12

3.1. Prototype -Nested Database Backend .......................... -3-1

3.2. The Children Relation .................................. 3-3

3.3. E Specification of the Children Relation ....................... 3-3

3.4. The Nested Employee Relation ............................ 3-4

3.5. E Specification of the Employee Relation ..................... 3-4

3.6. Example Plan Tree for Filescan Query ................ .... 3-7

3.7. Example Plan Tree for Loops-Join Query ..................... 3-10

3.8. Example Plan Tree For Store-Values Query .................... . 3-13

3.9. Example Plan Tree For Modify Query ....................... 3-14

3.10. Example;Plan Tree For Delete Query ....................... .. 3-15

3.11. Contents of ReLtable .................................. 3-17

3.12. Contents-of Sym-table ................................. 3-18

A.1. Employees- Over 35 With Male Children ....................... A-2

A.2. Project-Out Employee and Child. n Names ..................... A-2

A.3. The Student Relation .... ............................. A-3

viii



Figure Page

A.4. The Employee Relation Joined (on Children) to the Stua,:nt Relation A-4

A.5. The Flat Employee Relation .............................. A-4

A.6. The Nested Employee Relation ..... . ... ........... ... .. A-5

B.1. A Plan Node ....................................... B-2

B.2. A Pred Node ....................................... B-2

.3. A Predicate Tree .................................... B-4

B.4. A List Node .............. ........................... B-4

B.5. An Attrdesc Node .................................... B-5

C.1. Schema for the Employees Nested Relation ..................... C-1

D.1. Schema for the Products Nested Relation .................... D-1

ix



List of Tables

Table Page

4.1. Code Generation Times for Relational Drawing Data Query ...... 4-3

4.2. Code Generation Times for Relational d.ctivity Data Dictionary Query 4-3

4.3. Code Gencration Times for Relational Data Element Data Dictionary

Query ............................................ 4-4

4.4. Code Generation Times for Nested Queries ..................... 4-4

4.5. Comparison of Code Generation Times ....................... 4-5

4.6. Execution Times for Relational Drawing Data Query ............. 4-6

4.7. Execution Times for Relational Activity Data Dictionary Query . . . 4-6

4.8. Execution Times for Relational Data Element Data Dictionary Query 4-7

4.9. Query Execution Times for Nested Queries ..................... 4-7

4.10. Comparison of Query Execution Times .................. 4-8

x



AFIT/GCS/ENG/90D-06

Abstract

Unique database requirements in the realm of non-standard applications (such as

computer-aided- design (CAD), computer-aided software engineering (CASE), and office

information systems (OIS)) have driven the-development of new data models and database

systems based-on these new models. In particular, the goal of these new database systems

is to exploit the advantages of complex data models that -are more efficient (in terms of

time and space) than their relational counterparts.

This research effort describes the design and implementation of the Triton nested

relational database system, a prototype system based on the nested relational data model.

Triton is intended to be used as the backed storage component for some non-standard

application. To quickly prototype the system, the EXODUS extensible database system is

used in the development of Triton.

The research presented in this document focuses on- Triton's operator and access

methods, and-compares the performance of the nested relational model versus the relational

model using these methods. In addition, the effectiveness of the EXODUS extensible

database toolkit is evaluated.

xi



ACCESS AND OPERATOR METHODS FOR THE

TRITON NESTED RELATIONAL DATABASE SYSTEM

I. Introduction

1.1 Overview

Information storage and retrieval plays an increasingly important role in our lives.

Banking transactions, military command and- control, and-hospital record keeping are but

a few examples of our dependence upon the prompt processing and efficient management

of large volumes of data.

Since the early 1960's, computerized databases have proven to be an indispensible

way to-manage information (19). A database-management-system (DBMS) consists of two

parts: a set of computer data and programs-that provide access to that data (18:1). A

DBMS is different from a file system because-in a file system only small-portions-of data

can be examined or updated at a time; file systems do not allow the efficient correlation

of data in separate files. DBMSs provide this- correlation in a fast and easy fashion.

In recent years, database research has -focused on the development of database

systems to support non-standard applications, such as computer-aided design (CAD),

computer-aided software engineering (CASE), and office -information systems (OIS). Re-

quirements in these-new application areas have-driven the-development of-new datamodels

and database systems based on--these new models to efficiently manage large volumes of

non-standard, or-complex, data-(such as textural or pictoral information).

The Triton nest.d relational database system is a prototype- system based on an

extension of the relational model (8), called the nested relational modelz(32), which- allows

a hierarchical- representation of complex objects. The -pimary goal- of-this researciheffort

is to -develop and implement operator and access methods for the Triton system- that

efficiently exploit this hierarchical representation of data. The intended use of the Triton

system -is as the backend for applications which require database support not provided by

1-1



current relational databases, such as CASE or CAD tools. Thus, queries to the system

will bemade via embedded calls within the application program, and, as such, Triton will

be dealing with known queries as opposed to ad hoc queries.

The development of a DBMS is a mamoth task in terms of time-and the amount

of programming required. In order to quickly prototype the Triton system we utilized

EXODUS (7), an extensible database "toolkit" developed at the University of Wisconsin.

EXODUS provides several necessary facilities and tools that aid in the development of

Triton's access methods, which include a storage manager and a persistent programming

language, called-E. Not only does this-research effort provide Triton the ability to process

queries of any type (except for data restructuring queries), it also provides the means to

evaluate the advantages and disadvantages of using extensible systems such as EXODUS

and-a persistent-programming language to build application-specific database management

systems.

The purpose of this chapter is to define the scope and-purpose of this research effort.

The -relationaltmodel is summarized, followed by an introduction of the -nested relational

model. The Triton nested- database system is then described, whic, leads-into the purpose

and scope of my research.

1.2 Background

1.2.1 Relational Database Model. In 1970, Codd proposed the--formal relational

database model (8). In this model, -information- is stored in a tabular format called a

relation which is composed of attributes, or fields, and records, or tuples. A column in

a table represents an attribute and a -row is a single record. As an example, Figure 1.1

shows a simple relation depicting information on employees ofsa company. In the relational

model, all attribiutes must be atomic, or undecomposable. In- other words, an attribute

can -only contain one integer, one real number, -or a single character string. !"A -reAafion

which only has-atomic valued attributes is said- to -be in first normal form (1NF)." (23-7)

1.2.2 The Nested Relational Model. The nested relational model (NRIM) is an ex-

tension of the -relational model that -relaxes the INF restriction and allows -attributes of a

1-2
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dept emp.name emp.age emp-ssn

Marketing John Smith 27 237-46-3567
Research Michael Taylor 31 395-73-8901

Advertising Tina Therrien 43 555-12-3434
Personnel Carla Dunlap 37 624-35-8152

Figure 1.1. The Flat Employee Relation Without Children

relation to be a set of values (20), or possibly, another relation (32). The NRM has two

advantages over the relational model for the storage of hierarchical data: decreased storage

requirement and increased processing speed. These advantages- are best illustrated by an

example. Assume we wish to store information on the employees of a company and their

children. If a relational database is used to store -this informauon,-it requires the relational-

tables shown in Figures 1.1 and 1.2. Notice that the emp-ssn- attribute is duplicated in

both tables -so that the correspondence between- employees and- their children is not lost.

This attribute duplication clearly requires additional data storage. However, -if a nested-

relational database is -used to store this information, only a single table is required as

depicted-in Figure 1.3. Because children are nested directly under employees in the same

table, the empssn field does not have to be duplicated to correlate employee data and

children data. In addition, a query -on the relational database involving -both employee

data and children data would require- the two tables to be joined, which takes -time.1 Since

all data-is kept in one table in the- nested relational model, a costly join does not have

to take- place. An intangible advantage of the NRM over the relational model is a more

intuitive-mapping of complex data; the relational-model splits the- data into 1NF "chunks",

while the NRM allows data to remain in hierarchical form within the database schema.

However, the nested relational- model does have some disadvantages. The schema

of relations is more complex due to relation-valued attributes. In addition, because data

is not normalized, updates to a nested relation may require the modification of several

tuples as- opposed to the modification of one tuple in the relational version. Finally, the

nested relational model does not allow the sharing of relation-valued attributes between

Such a query might-be, "What are the names of Michael Taylor's children?"

1-3



emp-ssn child-name childage i se]

237-46-3567 Jeramie 8 M
237-46-3567 Todd 4 M
395-73-8901 Susan 3 F
555-12-3434 Laura 18 F
555-12-3434 John 13 M

555-12-3434 Matthew 11 M
624-35-8152 George 5 M
624-35-8152 Janis 3 F

Figure 1.2. The Children Relation

dept emp-name emp-age emp-ssn children
I _ I child-name childage

Mktg J. Smith 27 237-46-3567 Jeramie 8 M
Todd 4 M

RIsrch M. Taylor 31 395-73-8901 Susan 3 F
Adv T. Therrien 43 555-12-3434 Laura 18 F

John 13 M
Matthew 11 M

Pers C. Dunlap 37 624-35-8152- George 5 M
_ _Janis 3 F

Figure 1.3. The Nested Employee Relation

tuples of -nested relations. However, for the Triton system, we feel -the advantages of the

nested relational model- outweigh its -disadvantages, particularly since the nested model

outperforms the relational model for -complex data in terms of -query execution time (as

shown in- Chapter 4).

1.3 Purpose of Thesis

The -goal of this -research is to-provide Triton the ability -to-process queries of any

type (except for data restructuring queries) and to-lay -the foundation for future work in

this area. In particular, this iesearch-centers on the design and implementation-of access

and operator methods that take advantage of the hierarchical nature of the nested data.

Because-the EXODUS extensible database system is used in the development of the Triton

1-4
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Figure 1.4. The Triton Nested Database System Architecture

system, the operator and access methods are -developed within the constraints dictated

by EXODUS. The -two areas where these constraints arefelt most strongly are in the

representation of the nested relational model using the persistent programming language

constructs of the E programming language provided by EXODUS (25), and access to these

persistent structures -via the EXODUS storage manager (5). These issues-are discussed-in

more detail in Chapter 4.

1.3.1 The Triton Nested Relational Database System Architecture. The scope -of

this research effort -is best explained within -the -context -of the operation- of the Triton

system. Query processing in this system, depicted in Figure 1.4, is explained below.

The user (or-application -program) inputs a query that is written-in- a spechid query

language for nested relations, called SQL/NF (26). By accessing the database schema

via-the catalog manager, the parser translates-the query into an unambiguous algebra-for

computer manipulation. This algebraic representation is contained in a data structure

called -a query tree, which consists of a series of nodes and pointers to other nodes. Each

query -node contains a-relati.mal algebra operator or an access -method, the relation(s) the

method refers to, and-any oolean conditions to apply.

1-5



The query tree is passed to the rule-based optimizer where it is changed to a plan tree.

In the optimizer, the sequence and contents of the nodes in the query tree are changed

into an optimized plan tree and relational operators are replaced with specific operator

methods.

The E code generator traverses the-plan tree and generates the E code to effect the

operator and access methods to perform the query. The E compiler links the methods with

the E code that specifies the relation definitions. The resulting object code is executed to

manipulate the information in the database via the storage manager. The manipulated

data is returned to the user as the response to the query.

1.3.2 Algebra Used in the Triton System. The implementation of the operator and

access methods relies on a structural representation of-the- nested relational algebra de-

veloped by Latha Colby (9). Colby defined a recursive-algebra for nested relations that

builds on-the traditional-relational algebra operators. Her operators support the retrieval

of information from any level of nesting-in a relation without first "flattening out" -the

relation to fit the relational model (9:276).

Colby's algebra uses-an extensive group of set operators and redefines the select (a),

project (7r),-and join (M) operators of the-relational model for use on nested objects. In

addition, she defined two new operators, nest (v) and- unnest (it). The nest operator

restructures the database into a nested form, while the unnest operator-"flattens out" the

nested relation into a relational form. Appendix A gives a brief summary of each of Colby's

relational operators and- demonstrates their use on example nested relations.

1.4 Scope -of this Research/Objective

The work accomplished in this research effort is -summarized as follows:

1. Design and implementation of the operator methods of the Colby algebra to handle

multiple levels of nesting, including:

* The filescan method that implements a project and/or a select

* The loops-join -method that implements ajoin-as well as a project and/or select

1-6



2. Design and implementation of the access methods to modify data in the database,

including:

* The store-values method that adds data to a relation at any level or levels of

nesting

e The modify method that modifies data in a relation at any level or levels of

nesting

* The delete method that deletes data from a relation at any level or levels of

nesting

* The-create-rel method that adds a new relation to the database

* The -drop-rel method that deletes a relation from the database

3. Design and implementation of the code generator, codegen, to implement the operator

and access methods

4. Testing of methods-and code generator

5. Comparison of the performance of the nested relational model versus its normalized

(1NF) version using-the operator -methods and code generator:

* Development of a,.i E representation of a sample set-of relational IDEFo language

data-(23)

9 Development of an E representation of nested relational IDEFolanguage data (23)

* Design of programs to load data into both E representations

* Creation of queries for both-representations to evaluate performance of the NRM

against the traditional relational model

* Comparison of-the NRM against the relational model based on code generation

time-and query execution time

6. Discussion of the advantages and disadvantages of using the EXODUS toolkit in this

research effort

1-7



1.5 Methodology/Approach

EXODUS provides several facilities and tools for the construction of application-

specific DBMSs. One such tool is the S programming language and its compiler (25, 24)

which is an extension of C++ (31) and builds on the object-oriented nature of C++.

By exploiting the powerful object-oriented capabilities of the E and C++ programming

languages, the access and operator methods (which are described in detail in Chapter 3)

are implemented as iterator functions (25) using a recursive procedure; whenever a nested

attribute is encountered in the plan tree, the procedure is recursively called. The use of

recursion greatly simplifies the design and permits any level of nesting in the query.

The E code generator implements the access and operator methods by setting up

an iterate loop that calls the operator methods. The operator and access methods are

tested using sample queries on various -database schemas to ensure-the prototype database

performs correctly.

The Triton system- is used to-store data on Structured Analysis (SA) diagrams (22)

using the NRM representation as well as a relational representation of the same data. The

schemas used are based- on. the work of Captain Gerald Morris (23). The performarnce of

the NRM representation i' compared- to the relational representation; in particular, the

advantage of the NRM over the relational model is demonstrated- with respect to code

generation- time and query executiontime.

All code produced in this research- effort is documented in accordance with Air Force

Institute of Technologzsystem development documentation guidelines and standards (15).

1.6 Materials and Equipment

This research effort-utilized the EXODUS facilities and tools on a Sun 3 workstation.

The developers of EXODUS at the University of Wisconsin released EXODUS software

modifications which wereimplemented- at -the Air :Force -Institutezof Technology-

1-8



1.7 Outline of this Document

Chapter 2 describes the historical development of the NRM and presents significant

work in NRM theory related to this research effort. This chapter also presents the EXODUS

extensible database system. Chapter 3 begins with a discussion of the E programming

language representation of nested relations. The chapter continues with a description of

Triton's operator and access methods, including a presentation of the E code generator

that implements these methods. Chapter 4 evaluates the performance of the NRM versus

the relational model using the access and operator methods and discusses the advantages

and disadvantages of using the EXODUS toolkit in the-development of the Triton system.

Chapter 5 provides a summary of this work and suggests areas for further research.

1-9



II. Overview of the Nested Relational Model and the EXODUS Extensible Database

System

2.1 Overview

This chapter provides an overview of key research in the area of nested relational

database systems as related to the development of the Triton nested relational dataibase

system. In the sections that follow, the motivation for the development of the nested

relational model is discussed, followed by a brief summary of its historical development.

Notable advances in nested relational database theory are also presented, including a brief

survey of nested -relational' database implementations. Finally, the chapter concludes- with

a description of the EXODUS extensible database system, and how EXODUS is used in

the-development of Triton.

2.2 Impetus-for the Development of the Nested Relational Model

The development of database management systems has been driven by the changing

needs of their users. The requirement for fast access to reliable data -by multiple users

sparked the creation of database management systems in the 1960's. For the next twenty

years, the hierarchical and network models dominated the field of database design. In 1970,

Codd (8) introduced a- data model based on a tabular format, called the-relational- model.

However, widespread use-of the relational model did not occur-until the late 1970's when

straightforward query languages for -the relational- model were developed and prototype

systems validated the model's efficiency- (30:2).

Today, the major push in the realm of database research comes -from a demand for

non-standard or non-business applications. These- applications include- engineering design,

such as computer-aided design (CAD) and computer-aided software engineering (CASE), as

well as office automation (33:2). These-new applications require more complex data models

to -efficiently map hierarchical data. "A database model- should allow databases to be

viewed in a manner that is-based upon the meaning of data as seen by-its-users..." (4:xvii).

The nested relational model is an attempt to-represent complex data within a relational

model framework.
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In the nested relational model, as with the relational model, information is stored in

a tabular -format. However, attributes in the relation do not have to be atomic, but can

have set-valued or relation-valued attributes. This allows information to be stored- in the

database in a way that corresponds to the user's interpretation of the data. Traditional

relational systems break complex data into several first normal form relations. Since non-

standard applications involve queries that require access to many of these relations at once,

computationally expensive joins are -needed to correlate all the necessary data. Nested

relations require fewer joins for complex data since the data is spread across fewer relations,

making the data model less confusing to users and database processing more efficient.

2.3 Historical Development of the Nested Relational:Model

2.3.- The Relational Model. The-nested relational model is-the descendant of the

relational-model introduced by Codd (8). Codd's seminal work represents data as tables,

called relations. Data in the relations are accessed via a key that uniquely indentifies

each row, or tuple, of the relation. Figure 2.1 shows- a simple relational database with

five relations-that hold information on VHSIC Hardware Description Language (VHDL)

designs (1).1 In the relational model, -all- attributes- of every relation must be atomic, or

non-decomposable. In-other words, attributes may contain only one character string, one

integer, or one real number. When a -relation conforms to this constraint, it is -in first

normal form (1NF).

2.3.2 Introduction of Set- Valued-Attributes. Makinouchi (20) first suggested- remov-

ing the 1NF requirement, laying the groundwork for the nested relational model. A model

allowing attributes to-have sets of values (called set-valued attributes) was introduced by

Jaeshke and Schek (17). Figure 2.2 shows the relational database for- the VHDL example

used in Figure 2.1 where set-valued attributes are allowed. Notice that the only relation

affected by the change is -the SYSTO.-COMP relation, where the- value for the COMP#

attribute is a set of component numbers. Using set-valued attributes limits the size of the

database because SYS#zdoes not have-to be repeated-for every occurance of COMP#.

'VHSIC stands for very high speed integrated- circuits.
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SYSTEMS COMPONENTS SYS.TO.COMP

SYS# NAME COMP# NAME SYS# COMP#

43191 COUNTER 15899 -CLOCK.GEN 43191 15899

14701 FULL-ADD 30018 CNTRL.CTR 43191 30018

41572 MAJORITY 14701 41572

81909 XOR.GATE 14701 81909

COMPONENT.PORTS
COMP# NAME MOD1 TYPE BIT BIT

15899 RUN in BIT 0 0

15899 CLK out BIT 0 0

30018 CLK I i BIT 0 0 SMO
30018 STRB In BIT 0 0 SYS# NAME iOD TYPE U'T BIT

30018 CON in BIT.V 0 1 43191 STRT in BIT 0 0

30018 DATA in BIT.V 0 3 43191 STROB in BIT 0 0

30018 COUT out BIT.V 0 3 43191 CON in -BIT.V 0 1

41572 A in BIT 0 0 43191 DATA.B in BIT.V 0 3

41572 B in BIT 0 0 43191 CNT out BI'£.V 0 3

41572 C in BIT 0 0 14701 X in BIT 0 0

4' 72 MAJ out BIT 0 0 14701 Y in BIT 0 0

81909 A in BIT 0 0 14701 CIN in BIT 0 0

81909 B in BIT 0 0 14701 Z out -BIT 0 0

81909 C out BIT 0 0 14701 COUT out BIT

Figure 2.1. Representation ofra Relational-VHDL Database

2.3.3 Introduction of Relation-Valued Attributes. Thomas and Fischer (32) went

another-step further, suggesting that attributes of a relation be allowed to hold not only

sets-of values, but-complete relations. A database that allows relation-valued attributes is

called- a nested relational database. Figure 2.3-shows the-nested relational database for the

VHDL example. This database is composed of two nested relations with one level of nesting

in each. The advantage of this-model comes from the storage savings -realized because the

SYS# and COMP#attributes-are not each-repeated three times in the database-schema

(as they are in the-two previous database schemas). In addition, only-one join is-required

to correlate all data-in the nested database,- as compared-to-the four joins required-in each

of the two previous schemas.
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SYSTEMS COMPONENTS SYS.TO.COMF

SYS# NAME COMP# NAME SYS# COMP#

43191 COUNTER 15899 CLOCK.GEN 43191 {15899, 30016}

14701 FULL-ADD 30018 CNTRL.CTR 14701 (41572, 81909)

41572 MAJORITY

81909 XOR.GATE

COMPONENT.PORTS
T STRT STP

COMP# NAME MOD TYPE BIT BIT

15899 RUN in BIT 0 0

15899 CLK out BIT 0 0
-- SYSTEM-PORTS

30018 CLK in BIT 0 0

30018 STRB n BIT 0 0 SYS# NAME MOD - TYPE BIT BIT

30018 CON in -BIT.V 0 1 43191 STRT in BIT 0 0

30018 DATA in BITV 0 3 43191 STROB in BIT 0 0

30018 COUT 0ut BIT.V 0 3 43191 CON in BIT.V 0 1

41572 A in BIT 0 0 43191 DATA_.B in BIT.V 0 3

41572 B in BIT 0 0 43191 CNT out BIT.V 0 3

41572 C in BIT 0 0 14701 X in-- BIT 0 0

41572 -MAJ out BIT 0 0 14701 Y -in BIT 0 0

81909 A in BIT 0 0 14701 CIN in BIT 0 0

81909 B in BIT 0 0 14701 z out BIT 0 0

81909 C out BIT 0 0 14701 COUT out - BIT 0 0

Figure 2.2. Representation-of a VHDL Database with Set-Valued Attributes
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SYSTEMS

PORTS
SYS# NAN,."1 COMP# STRT STP

NAME MOD TYPE BIT BIT

STRT in BIT 0 0
15899

STROB in BIT 0 0

43191 COUNTER CON in BIT.V 0 1

30018 DATA-B in BIT.V 0 3

CNT out BITV 0 3

X in BIT 0 0

41572 y in BIT 0 0

14701 FULL-ADD CIN in BIT 0 0

81909 Z out BIT 0 0

COUT out BIT 0 0

COMPONENTS

PORTS
COMP# NAME STRT STP

NAME MOD TYPE BIT BIT

RUN in BIT 0 0
15899 CLOCK.GEN

CLK out BIT 0 0

CLK in BIT 0 0

STRB in BIT 0 0

30018 CNTRL.CTR CON in BIT.V 0 1

DATA in BITV 0 3

COUT out BIT.V 0 3

A in BIT 0 0

B in BIT 0 0
41572 MAJORITY

C in BIT 0 0

MAJ out BIT 0 0

A in BIT 0 0

81909 XOR.GATE B in BIT 0 0

_ C out BIT 0 0

Figure 2.3. Representation of a VHDL Database with Relation-Valued Attributes
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2.4 Notable Advances in Nested Relational Database Theory

Following the development of the nested rela, ional model (NRM), research in the

areas of query languages, nested relational algebra and its optimization, as well as special-

ized access methods have demonstrated the viabilty of the NRM. The next three sections

review the work in each of these three areas relevant to the development of the Triton

nested relational database system.

2.4.1 The SQL/NF Query Language. In 1987, Roth, Korth, and Batory (26) de-

veloped an extended version of the SQL query language for use on nested relations, called

SQL/NF. As with SQL, SQL/NF uses SELECT-FROM-WHERE (SFW) expressions to

pose queries involving any level of nesting in a nested relation. Unlike SQL, SQL/NF

allows nested SFW expressions in both the SELECT and FROM clauses to manipulate

relation-valued attributes. Using the nested relational schema of Figure 2.3, an SQL/NF

query to retrieve the system name and port names for system 14701 is

SELECT name, (SELECT name
FROM ports)

FROM systems
WHERE sys# = 14701

The outer SFW-expression retrieves the name of the system where the system number is

14701. The inner (nested) SFW-expression selects the name of each port of system 14701.

An SQL/NF query to retrieve the component names and component port names for

the components of system 14701 is

SELECT components.name, (SELECT name
FROM components .ports)

FROn Systems, components
WHERE systems.comp# = components.comp# AND sys# = 14701

The Cartesian product of the two relations, systems and components is formed, and the

only tuples selected are those where the comp# attribute of systems and components is the
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same and sys/ is 1470j.. Then the name attributes of components and ports is projected

out.

These simple examples do not completely demonstrate the full power of SQL/NF.

However, they do show how complex queries can be simply posed to a nested relational

database. Because of its simplicity and understandability, SQL/NF was chosen as the

query language for the Triton system (28).

2.4.2 Colby Algebra and its Optimization. While query languages, such as SQL/NF,

are intended to provide an easy query capability for database users, rigid mathematical

algebras have been adopted for use on the relational and nested relational models to for-

malize the representation of queries. Natural language queries are usually translated into

the more rigorous algebra before being processed. The first algebras developed for the

NRM (32) required nested relations to be restructured to a relational format before infor-

mation coald be extracted from the database. However, Colby (9) suggested a recursive

algebra that retrieves information from any level of nesting in a relation without first

restructuring the relation.

Colby redefined the select (a), project (7r), and join (N) operators of the relational

model, and introduced two restructuring operators nest (v) and unnest (p). She also

decribed optimization techniques for her recursive algebra. Appendix A presents the op-

eration of the Colby algebra by some examples. Because of the ease with which SQL/NF

is mapped into the Colby algebra, the Colby algebra was selected for the Triton system.

2.4.3 Indexing Techniques and Access Methods. In databases, it is sometimes useful

to have an index on an attribute or several indices on a number of attributes to facilitate

quick access to a particular value. In the next two subsections, two papers are reviewed

that discuss indexing techniques and their use as access methods for nested relational

databases. In the first article, Bertino and Kim (3) present three indexing techniques

for use on nested relations. In the second article, the developers of the ANDA nested

database system (11) discuss a unique indexing structure and its use for efficient access

to information in their database. At the present time, no indexing techniques have been
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implemented for the Triton system. As such, these two articles are intended to serve as a

recommended approach for future developers of the Triton system.

2.4.3.1 Bertino and Kim's Indexing Techniques. The first indexing technique

introduced by Bertino and Kim sets up a nested index, that correlates the value of an

atomic attribute at some level of nesting with the indices of those tuples at the outermost

level of the relation that contain that value. The second index type, called the path index

correlates the value of an atomic attribute at some level of nesting with a set of path indices

along every level of nesting correponding to those tuples with that value. The third and

final index type introduced by Bertino and Kim is the multiindex which, given a specific

path, creates a separate index for each subpath.

Following the presentation of the three indexing techniques, Bertino and Kim com-

pared them based on storage cost, retrieval cost, and update cost. They concluded that

the nested index has the lowest storage cost and the best retrieval performance, while the

multiindex is best with respect to update performance.

2.4.3.2 ANDA Nested Database System. Deshpande and Van Gucht (11) im-

plemented a nested relational database called ANDA. Of particlular interest to this re-

search are the access methods and mechanisms ANDA uses for the retrieval of data from

the database. ANDA makes a distinction between value-driven operations, such as select,

join, and nest, and structure-oriented operations, such as project and unnest.

Speed of retri val of information is maximized for both types of operations by using

two different storage structures; VALTREE is the value-driven indexing structure, and

RECLIST is a special record-list structure used for structure-oriented operations. VAL-

TREE maps values to a list of tuple identifiers in all relations and relation- values attributes.

that contain that value. RECLIST maps these tuple identifiers to the actual physical ad-

di .ses where these tuples are stored. For increase efficiency, ANDA stores tuple identifiers

obtained from VALTREE in a special cache consisting of a set of stacks. Once these tu-

ple identifiers have been processed within the cache as specified by the query, RECLIST

retrieves the actual values or tuples in response to che query.
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2.5 Related Work

This section is intended to provide a brief survey of nested relational database imple-

mentations. This section describes the Advanced Information Management Piototype, the

Darmstadt Database System, and the Verso DBMS, focusing on their storage management

techniques and access methods.

2.5.1 Advanced Information Management Prototype (AIM-P). The Advanced In-

formation Management Prototype (AIM-P) (10) was developed by IBM as a research ve-

hicle in the realm of non-standard applications. There are two similarities between AIM-P

and the Triton system: (1) both are intended to be the database implementation "back-

end" for design application tools, and (2) both use the nested relational data model to

represent the underlying structure of the database.

Because AIM-P was developed completely from scratch, the developers had the free-

dom to implement their design to take full advantage of the underlying data model (as

opposed to the Triton system, which was constrained by the specific capabilities of the

EXODUS storage manager). 2 Thus, AIM-P's physical storage structure differs from Tri-

ton's in that Triton maps relation definitions into a programming language, while AIM-P

uses a tree structure to hold the same information. The advantage of a tree structure

representation of data is that tuples can be added or deleted quickly at any level of nesting

by simply adding or deleting a data pointer to the appropriate internal node of the tree.

2.5.2 Darmstadt Database System (DASDBS). Developed at the Technical Uni-

versity of Darmstadt, the Darmstadt Database System (DASDBS) (16, 27) is "...a kernel

that integrates the common features of a rather low-level storage component, but allows

efficient and flexible front ends tailored to specific application classes..." (27:51).

The DASDBS kernel provides access (such as reading, insertion, and deletion) to sets

of complex objects as opposed to a one-record-at-a-time interface by fetching or storing lists

of pages via a variable size buffer. Thus, a single scan of a complex object retrieves all of

the values of its sub-objects, which limits the number of disk accesses. This is very similar

2This is explained in more detail in Chapter 4.
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to the way the EXODUS storage manager works (5). The kernel provides operations to

read an object (similar to EXODUS's scan), insert an object (similar to EXODUS's in ...

new construct), and delete an object (similar to EXODUS's delete). Like the EXODUS

storage manager, the DASDBS kernel provia,.s concurrency control capabilities.

2.5.3 The Verso DBMS. The Verso DBMS (29) is a relational database system

that stores data in nested form (called V-relations) to increase query processing speed.

The Verso system consists of three layers:

1. The V-relation level, which is made up of V-relations and their schema

2. The file level, which is made up of the index and the physical representations of

V-relations

3. The lowest level, which is made up of blocks

This is similar to the Triton system, in that the V-relation levelcorresponds to Triton's

system catalogs, the file level corresponds to the E language representation of relations,

and the lowest level corresponds to the EXODUS storage manager.

The Verso system utilizes a "filter" (mapper) for on-the-fly processing of tuples,

which can perform all algebraic operations except for restructuring actions. The filter is

implemented as a finite state automaton (FSA), which scans the V-relation one byte at a

time. The advantage of using such a filter is that query processing is much faster because it

is mapped to a very low-level representation of the problem space on a dedicated machine.

The disadvantage is that this low-level representation is complex and difficult to grasp,

making the filter hard to modify and maintain.

2.6 EXOD US Extensible Database System

The creation of a new database system is not a trivial task. As with any major soft-

ware system, significant time is spent in the design, implementation, and testing phases.

Because of the need for the development of new database systems with novel capabilities,

extensible database systems have been designed to simplify the production of application-

specific DBMSs. Two such systems are the EXODUS extensible database system, devel-
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oped at the University of Wisconsin (7), and the GENESIS system (2). The EXODUS

system is not a DBMS, but a toolkit that provides the necessary facilities and tools to aid

in the development of new DBMSs. The goal of the EXODUS system is the provision of

extensibility without sacrificing performance (7:475).

Because of its power, flexibility, and availability, EXODUS was selected to aid in

the development of the Triton system. EXODUS provides generic system components and

furnishes component generators to aid in the construction of DBMS-specific components.

When neither approach is possible, EXODUS provides tools to aid in the development of

the component. The EXODUS tools used in the development of Triton include:

* the storage manager (5, 6), which stores the physical data of the database and pro-

vides access to the data via procedural calls

* the E persistent programming language and its compiler (25, 24)

2.6.1 EXODUS Tools Used in the Production of the Triton Nested Database System.
The architecture of the Triton system is given in Figure 2.4. At the present time, Triton's

parser (28) is able to parse all possible SQL/NF statements, but only builds query trees for

the statements that create and delete items in the system catalogs, as wvell as the statements

that directly translate into the appropriate algebraic operations of select, project, and

Cartesian product. Triton's parser component was implemented using the UNIX tools of

YACC and LEX.

The query tree built by the parser is passed to the rule-based optimizer where it is

changed to a plan tree. In the optimizer, the sequence and contents of the nodes in the

query tree are changed into an optimized plan tree and relational operators are replaced

with specific operator methods. At the present time, Triton's optimizer component has not

been developed. However, the intention is to use the EXODUS optimizer generator (13, 12)

to generate this component. The EXODUS optimizer generator takes as input (1) a set of

operators, (2) a set of methods that implement the operators, (3) transformation rules that

describe equivalence-preserving transformations of query trees, and (4) implementation

rules that describe how to replace an operator with a specific method. Using these rules,

a specific optimizer is generated for the particular application.
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Figure 2.4. The Triton Nested Database System Architecture Using EXODUS

We chose to use the EXODUS optimizer generator for Triton because the relational

algebra used by Triton ]ends itself to EXODUS' rule-based method. This modular approach

to database development will reduce the amount of code required for implementation of

the Triton system. The only unique code Triton's developers will need to write will be the

additional functions that are called by the optimizer when implementing a specific operator

or access method. With accurate cost functions, we anticipate the generated optimizer will

work as well as a custom built one.

Using the programming constructs provided by the E programming language, the E

code generator is designed to traverse the plan tree and generate the E code to effect the

operator and access methods to perform the query. The EXODUS E compiler is used to

link the methods with the E code that specifies the relation definitions.

The storage manager is a fixed component provided by EXODUS. Conceptually, the

storage manager is the layer between the access and operator methods and the physical

data in the database. The storage manager is accessed via procedural calls in the compiled

query which allow the creation, destruction, and iteration through the contents of database

files. Objects can be inserted in and deleted from a file at any offset in the file, and explicit
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clustering of objects on disk can be specified. The storage manager provides procedures

for transaction management as well as versioning of objects.

2.7 Summary

The goal of this chapter was to familiarize the reader with several key topics re-

lated to this research. This chapter introduced the nested relational model and described

its historical development. Notable advances in nested relational theory relevant to the

Triton system were described, including a brief survey of nested relational database imple-

mentations. Finally, the EXODUS extensible database system was described, focusing on

how the EXODUS toolkit was used to develop the Triton system. The following chapter

describes in more detail how EXODUS is used to develop the access and operator methods

for the Triton system.
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III. Design and Implementation

3.1 Overview

The goal of this research is to design and implement operator and access methods

for the Triton nested relational database system to efficiently process queries on nested

data. First, operator methods are developed to implement the project, select, and join

operators in the Colby relational algebra. Second, access methods are implemented to add

a relation, delete a relation, store tuples, delete tuples, and modify tuples. The methods

are implemented by the E code generator called codegen. Figure 3.1 shows how the E code

generator fits into the backend of the prototype database.

The optimizer produces a plan tree, which structurally represents the database user's

query. The nodes of the plan tree contain specific operator and access methods. The

program codegen traverses the plan tree in postorder and, through the use of templates,

generates the code required to implement the query. This code is written to a file called

query.e, which, when executed, performs the query. A unique query.e file is dynamically

created for each user query. If a relation is added to or deleted from the database, codegen

does not create the file query.e, but directly performs the necessary actions to add or delete

the relation.

The remainder of this chapter is divided into three sections. The first section de-

scribes how nested relations are represented in Triton. The second section describes Tri-

ton's operator and access methods. Finally, the third section discusses the design of the E

code generator that implements the methods.

plan qery~eresult
optimnizer codegen E Comnpiled C Compiler of

query

Figure 3.1. Prototype Nested Database Backend
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3.2 Representation of Nested Relations in Triton

Because of its central importance to the Triton system, it is important to know how

nested relations are represented in E. A brief discussion of the declaration and representa-

tion of both non-nested and nested relations in the E programming language follows.

3.2.1 E Representation of Non-Nested Relations. Figure 3.3 shows the relation

specification for the non-nested children relation of Figure 3.2. A tuple of the children

relation is of type child. The attributes are specified before the keyword public. Following

the keyword public are the constructor and member functions. The constructor function

takes as input three character pointers and an integer to initialize a tuple in the children

relation. The get-emp-ssn, get-child-name, get-child-age, and get-sex member functions

return the value of the corresponding attribute. The change-emp-ssn, change-child-name,

change-child-age, and change-child-sex member functions enable the values of the at-

tributes to be changed. The print member function takes a pointer to a child tuple and

prints out the values of the attributes. The implementation of the member functions are

not given here. The line

dbclass child-relation: collection [child];

specifies that a child-relation type consists of a collection of tuples of type child. The line

persistent child-relation children;

declares a persistent relation called children, which is of type child-relation.

3.2.2 E Representation of Nested Relations. The E programming language sup-

ports the implementation of nested relations through the use of collections for relation-

valued attributes. Figure 3.5 shows the E language relation specification for the em-

ployee relation of Figure 3.4. The emp type contains four atomic attributes called dept,

emp-name, emp-age, and emp-ssn as well as one relation-valued attribute called children,

which is a collection of tuples of type child. As a requirement, only atomic attributes are

specified in the constructor and member functions. The employee relation is a persistent
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emp-ssn child-name child-age

237-46-3567 Jeramie 8 M
237-46-3567 Todd 4 M
395-73-8901 Susan 3 F
555-12-3434 Laura 18 F
555-12-3434 John 13 M
555-12-3434 Matthew 11 M
624-35-8152 George 5 M
624-35-8152 Janis 3 F

Figure 3.2. The Children Relation

object of type emp-relation made up of a collection of tuples of type emp. Any level of

nesting can be represented in the E programming language in a similar fashion.

dbstruct child {
dbchar emp.ssn[12];
dbchar child_name [32];

dbint child-age;
dbchar sex[2];

public:

child (char *, char *, int, char *);
char * get.emp.ssnO;
void changeempssn (char *);

char * getchildnameo;
void change-childname (char *);
int get.child-ageO;

void change.childage (int);

char * get-sexO;
void change-sex (char *);
void print (child *);

dbclass child-relation: collection [child];
persistent child-relation children;

Figure 3.3. E Specification of the Children Relation
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[ dept emp-name emp-age emp-ssn children
child-name[ child-age sex

Mktg J. Smith 27 237-46-3567 Jeramie 8 M
Todd 4 M

Rsrch M. Taylor 31 395-73-8901 Susan 3 F
Adv T. Therrien 43 555-12-3434 Laura 18 F

John 13 M
Matthew K_ M

Pers C. Durlap 37 624-35-8152 George 5 M
Janis 3 F

Figure 3.4. The Nested Employee Relation

dbstxuct child {
dbchar child-name[32);
dbint child.age;
dbchar sex[2];

public:
child (char *, int, char *);
char P get.childnameO;
void change.child-name (char *);
int get.child.ageO;
void change.child.age (int);
char * get.sexO;
void change.sex (char *);
void print (child *);

dbstruct emp {
dbchar dept[20];
dbchar emp..name[32];
dbint emp-age;
dbchar emp-ssn[12];
dbclass childRVA: collection [child];
childRVA children;

public:
emp (char *, char *, int, char *);
char * get-deptO;
void change.dept (char *);
char * get.emp.nameO;
void changoemp.name (char *);
int get.emp.ageO;
void change.emp.age (int);
char * get.emp-ssnO;
void changeoemp-ssn (char *);
void print (emp *);

I;

dbclass emp..rolation: collection [emp];
persistent emp.relation employee;

Figure 3.5. E Specification of the Employee Relation
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3.3 Design and Function of Methods

In this research effort, I designed and implemented two operator methods. The files-

can method can perform a select, a project, or both a sehct and project. The loops-join

method implements the join operator and can perform a select and/or project in conjunc-

tion with the join. In addition, five methods were implemented that (1) create a relation,

(2) delete a relation, (3) add tuples to a relation, (4) modify tuples in a relation, and

(5) de13te tuples from a relation. The methods that create and delete a relation are not

generated by codegen and written to the query.e file. Instead, codegen directly performs

the operations necessary to create or delete the relation. Because of this, the create re-

lation and delete relation methods are not described in this section, but are explained in

Section 3.4.

The design and implementation of my operator and access methods utilize several

data structures. Because these structures play a vital role in understanding the design of

Triton's operator and access methods, Appendix B explai.s each one in detail.

3.3.1 The Filescan Method. The filescan method is implemented as an iterator

function (25) that yields tuples to the iterate statement with the schema defined by the

projection list. If a projection is taking place, the filescan method first defines a tempo-

rary nested relational schema to hold a tuple of the projected input relation. Once this

temporary relation template has been defined, filescan iterates through each tuple of the

input relation and determines if the tuple meets the selection condition, if such a condition

exists. If the tuple meets the selection condition, the appropriate attributes are copied

into the temporary relation template. A pointer to this temporary relation tuple is yielded

(returned) to the calling procedure.

3.3.1.1 Plan Tree Structural Represe lation of a Filescan. Using the nested

relational schema for the employees nested relation contained in Appendix C, the following

example illustrates how the filescan method works. Assume we have a requirement to do

a project and a select on the employees relation. The attributes to be projected out from

cmployees are name and age, and from the children relation-valued attribute of employees,
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the name and age attributes must be projected. From the toys relation-valued attribute

of children, the name attribute must be projected. The selection condition extracts only

those tuples where the employees' age is over 30 and the children's age is less than 5.

The Colby algebra equivalent of this query is:

7r ((name, age, children (name, age, toys (name))) a (employeesage>30 (childrenage<s)))

The plan tree representation of this query is shown in Figure 3.6. Notice that since

the predicate, age < 30, pertains to the atomic attributes at the highest level of the

employees relation, the predicate tree hangs off the pred portion of the plan node. Since

the second predicate, age < 5, pertains to the children relation-valued attribute, the

one node predicate tree hangs off the cond portion of the children list node. At first, I

attempted to make one predicate tree that specified all conditions for the query regardless

of what level of nesting they pertained to, but found this required many traversals of the

entire predicate tree to extract conditions (one traversal for each level of nesting). I found

it was more efficient (in terms of time) to separate the predicate into smaller predicate

trees, one for each level of nesting. This way, only the conditions relevant to that level are

present, and the predicate tree is not unnecessarily traversed if no conditions exist for that

level.

Each projected attribute is represented by a list node. Relation-valued attributes

also appear as list nodes, but only list nodes representing relation-valued attributes can

have values for cond and sublist. The cond field of the list node for the relation-valued

attribute children points to the one node predicate tree representing the condition age < 5.

Since there are attributes being projected from the relation-valued attribute children, the

sublist field of the lis5 node representing the children attribute points to another linked list

of list nodes representing those projected attributes of children. I thought of representing

the projected attributes at all levels of nesting as one linked list, rather than using sublists

for the projected attributes of relation-valued attributes. However, the use of sublists give

the representation of nested relations a recursive appearance, which lends itself well to

the use of recursion in the construction of the operator and access methods by the code

generator codegen.
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Figure 3.6. Example Plan Tree for Filescan Query

3.3.1.2 How the Filescan Method Works. The code that implements the files-

can for the tree discussed above is generated by codegen and contained in the file query.e.

The contents of query.e for this plan tree are given in Appendix E. The code between

the extern statement and the iterator statement is the temporary relation schema that

specifies the structure of a relation with the necessary attributes projected out from the

input relation. This specification also includes the code to implement the constructor and,.

member functions of the temporary relation. :

The iterator actually performs the filescan. The filescan iterator is set up as a series

of steps for each level of nesting. These steps are:

scanning one tuple at a time

2. test the tuple to see if it meets the selection criterion, if one exists for that level of

nesting
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3. project the necessary attributes from the input tuple (by using the get- member func-

tions) and record them in the temporary relation schema (by using the constructor

function)

4. set up necessary reference pointers to the input relation and to the temporary relation

if there is another level of nesting in the input relation

At the outermost level of nesting, after all other relation-valued attributes have been

processed, a pointer to the temporary tuple is returned by the filescan iterator. The main

program of query.e iterates through the filescan tuple-by-tuple and prints out the values

of the attributes.

3.3.1.3 Rationale Behind Design Decisions for the Filescan Method. I did

not initially implement the filescan method as an iterator function, but performed the

projection and selection in the main program along with the code that prints the result. I

decided to design the filescan as a separate function to make tl' . code in the query.e file

modular and less confusing, which is particularly useful when the query.e file implements

several filescans in one query (which occurs when filescans filter tuples to a join, as will be

discussed in Section 3.3.2).

After I decided to make the filescan a separate function, I designed it to return

the resultant relation as a whole after the processing was complete. However, it is much

faster to filter the relation a tuple at a time if further processing of the tuple is going

to take place (for example, if the filescan is filtering tuples to a join). This way, the

filescanned relation is only processed once. I chose to implement the filescan as an iterator

function, because iterator functions are controlled looping constructs that automatically

step through a sequence of items. Since each tuple of the filescanned relation needs to

be processed further (for a join) or printed (for a filescan alone), I felt that designing the

filescan method as an iterator function would elegantly serve my needs.

3.3.2 The Loops-Join Method. The loops-join method is implemented as an iterator

function that yields tuples with the schema defined by the join. The loops-join method

can implement a projection and/or a selection in cc.ijunction with the join. The loops-join
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method first defines a temporary nested relational schema to hold a tuple of the result of

the join, or a tuple of the projected result of the join (if a projection is also taking place).

The loops-join method iterates through each tuple of the left input, and for each tuple,

it iterates through all tuples of the right input. If the tuples meet the join criterion, the

appropriate attributes of each are copied into the temporary relation. If no join criterion

is specified, the loops-join method acts as a cross product. A pointer to the temporary

relation tuple is returned to the calling procedure.

3.3.2.1 Plan Tree Structural Representation of a Loops-Join. To illustrate

how the loops-join method works, the nested relation employees in Appendix C and the

nested relation products in Appendix D are used. The required operation is to join the

products relation with the toys relation-valued attribute of children, where children is a

relation-valued attribute of employees. The join criterion is that the name of the product

must be the same as the name of the toy. Tc make this example iaore realistic, assume a

filescan is going to take place on employees that projects out the employee's name as well

as the name of the toy. In addition, assume a filescan is going to take place on products

that projects out the product's name and all the hiformation on the manufacturer of the

product.

The Colby algebra equivalent of this query is:

N0 (7r ((name, children (toys (name))) employees) (children (toys)), 7r ((name,

manufacturer) products))

where 0 is toys.name = products.name

The plan tree representation of this query is shown in Figure 3.7. The two inputs to

the loops-join node are filescan nodes that each have attribute lists for their projections.

The second attribute of the products filescan is a relation-valued attribute but does not

have a sublist, hence all attributes of manufacturers are to be projected out. The loops-join

node specifies the join criterion, which hangs off the pred field of the plan node. Notice

that the constant-on-right field of the pred node is false, meaning that both operands in

the predicate are attribute names (and not constants).
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Figure 3.7. -xample Plan Tree for Loops-Join Query
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On the loops-join node, the Colby join path is specified by the two list nodes, children

and toys. This means that the join is to occur between the toys relation-valued attribute

and the products relation. While the Colby algebra enables a join to occur within a nested

relation-valued attribute of the first relation, the join can only occur at the top level of the

second relation. Otherwise, the joined schema would not be constructable.

3.3.2.2 How the LoopsJoin Method Works. As with the filescan method,

the code that implements the loops-join method for the plan tree shown in Figure 3.7 is

generated by codegen and contained in the file query.e. Appe'dix F shows the contents

of query.e for this plan tree. The group of code before the main program can be logically

separated into three sections:

1. the templates and filescan iterator function for the employees relation

2. the templates and filescan iterator function for the products relation

3. the templates and loops-join iterator function for the join of the products relation to

the employees relation

The first two sections (which implement the two filescans) operate as discussed in Sec-

tion 3.3.1. The third section of code (which implements the join) is similar to the two

filescan sections, but has some notable differences.

First, a temporary relation structure is defined that holds a tuple of the result of the

join. This is performed the same way as in the filescan method. The temp5 structure is the

level where the join is occuring. Notice that the name attribute of toys has been renamed

to toys-name and the name attribute of products has been renamed to products-name. The

reason for the renaming is that attribute names must be unique within a level of nesting.

Since the joining of the relations would put two occurances of name at one level of nesting,

these two attributes are given a unique name b codegen by combining the parent relation

name with the attribute name.

The loops-join iterator performs the join. For each tuple of the filescan on the left,

if the join level has not been reached, the join template is filled. This continues until the
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join level is reached. Then for each tuple of the filescan on the right, if the join condition

is satisfied, the join template is filled with information from the two relations. If there are

any relation-valued attributes present in the join template at this level, reference pointers

are set up to descend a level of nesting. All relation-valued attributes that belong to the

left and right relations are filled. Finally, after a single tuple of the join template has been

filled, a pointer to this tuple is yielded (returned) by the loops-join iterator.

The main program of query.e uses the loops-join iterator to step through each tuple

of the joined relation and prints out the value of each attribute.

3.3.2.3 Rationale Behind Design Decisions for the Loops-Join Method. Be-

cause the loops-join method may feed a join above it, I also implemented this method as

an iterator function. The alternative is to return the joined relation after processing as a

whole; however, if further processing is taking place above the join, it is more efficient in

terms of time to perform the join as a filter, passing tuples one at a time to the node above.

I designed the loops-join method to carry out a projection and selection in conjunction

with the join to avoid having to process all the tuples of the join a second time.

3.3.3 Store-Values Method. The store-values method can insert any number of tu-

ples into a nested relation at any level of nesting. Condition statements are used to locate

the correct tuple in the relation where the new values are to be stored. The code generator

creates the query.e file which contains the code to implement the store-values method.

As an example, assume the employees schema as defined in Appendix C is used.

Suppose we wish to add a new project to the employee David and two new toys to his

daughter, Flo. Figure 3.8 gives the plan tree representation of this query. The leaves of the

tree are values that are to be inserted into the relation. At the leaf level, each attribute

of the relation or relation-valued attribute has, by definition, a corresponding list node

containing the value of the attribute for this new tuple. This value is contained in the

value field of the attrdcsc node. If a relation-valued attribute is being into the relation, it

may have a sublist pointing to the values of its attributes. A null sublist indicates that

there are no tuples for this relation-valued attribute.
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Figure 3.8. Example Plan Tree For StoreValues Query

The contents of query.e for the plan tree of Figure 3.8 is given in Appendix G. The

method scans each tuple of employees until David is reached. Then David's children are

scanned until Flo is reached, where two new toys are added. Finally, a new project is
added to David's projects relation-valued attribute.

3.3.4 Modify Method. The modify method can modify values of the attributes for

a nested relation at any level of nesting. Condition statements are used to locate the tuple

in the relation where the values are to be changed. If no condition is specified, the atomic

values of all tuples in the relation or relation-valued attribute will be changed to the new

value. The code generator codegen creates the query.e file which contains the code to

implement the modify method.

To illustrate, using the employees schema as defined in Appendix C, suppose that the

employee David is working on a project named "BNAD" that must be renamed "TROY".
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Figure 3.10. Example Plan Tree For Delete Query

3.3.5 Delete Method. The delete method can delete tuples from a nested relation

at any level of nesting. Condition statements are used to locate the level(s) where the

deletion is to occur. The code generator codegen creates the query.e file which contains

the code to implement the delete method.

To illustrate, using the employees relation schema as defined in Appendix C, suppose

all of David's projects and all of his daughter Flo's toys are to be deleted. Figure 3.10 gives

tle plan tree representation of this query. Only relation-valued attributes appear in the

attribute list. A list onode with a condition and a sublist indicates that the deletion does not

occur at this level, but at some sub-level. If a list node has a condition but no sublist, only

those tuples that meet the selection condition are dcleted. If the list node has no condition,

then all its tuples are deleted. When a tuple is deleted that has a relation-vaiaed attribute

in its schema, all tuples in its relation-valued attribute must be deleted.

Appendix I gives the contents of query.e for the plan tree of Figure 3.10. The method

scans employees until David is reached. Then all of David's children are scanned until Flo

is reached, and all her toys are deleted. David's projects are then deleted.
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3.4 Code Generator

The code generator codegen generates a unique query.e file for each query by walking

the plan tree.1 The main program of codegen makes a function call to traverse-plan-tree

to walk the plan tree and generate the code. After this is e, the main program calls

generate-main which generates the main program of query.e.

3.4.1 Rationale Behind Design Decisions for the Code Generator. The end purpose

for the Triton system is to be the backend for non-standard application tools. Application

programs make zalls to the database via embedded SQL/NF statements. When it came

time to design how the Triton system would perform queries, two approaches were possible.

The query implementor could either be (1) an interpreter that manipulates the database

directly, or (2) a code generator that generates the code to implement the query.

There are advantages and disadvantages to both approaches. The interpreter ap-

proach would work well in an ad hoc query environment, since manipulation of the database

is performed directly by the interpreter. The code generator would require substantial time

to compile and run each generated query. The code generator approach works best when

specific queries are known ahead of time, so that the code for those queries is already

generated and compiled. The interpreter approach would take longer in this type of envi-

ronment, since the query must be analyzed and executed on the fly. Because the intended

environment for the Triton system does not require an ad hoc query capability, the code

generator approach was chosen.

3.4.2 System Catalogs. The cod, generator uses two system catalogs (which are

stored as relations) to record information about the relations in the database. These two

catalogs, developed by Mankus (21) are called ReLtable and Sym-table. Figure 3.11 gives

an example of the contents of ReLtable to hold the two relations, employees and products,

which were used in the description of the loops-join method in Section 3.3.2. Figure 3.12

shows the corresponding contents of Sym-table.

'However, codegen does not create a query.e file for the create relation and delete relation access methods.
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Figure 3.11. Contents of ReLtable

ReLtable has three attributes, relIndex, relName, and relType. The name of the

relation is recorded in the relName attribute. The rellndex attribute serves as an index

for ReLtable, and the relType attribute records the relation's schema and is a number

corresponding to the index of Sym-table where the schema is defined.

Sym-table has seven attributes called index, name, level, attr, numb, parent, and

nest-table. The name attribute holds the name of the schema or attribute. Schema names

must be unique. The level attribute tells whether -this entry is a schema or an attribute.

The attr attribute describes the type of the attribute. Relation-valued attributes have-the

value PREV.DEFINED for attr, while schemas have ON-THEFLY. The numb attribute

records the number of characters if the type is CHAR,-the number of bytes if the type is INT

or FLOAT, or the-number of attributes if the type is PREV.DEFINED or ONTHEYLY.

If the value for level is ATTRIBUTE, the parent attribute holds the-index number of-the

parent schema. If the value for attr is PREV.DEFINED, the nest-table attribute holds

the index number of its defining schema.

3.4.3 Operation of the Code Generator. All-the methods except for the loops-join

method is represented by a single node plan tree; However, the loops-join method -is

represented by-a multi-node plan tree which is traversed by codegen in-postorder. Codegen

uses "statement -templates" in the E programming language to create the query.e files

(described in the previous section) corresponding to the plan tree. Recursion is used

whenever a sublist is encountered- in the plan tree, which greatly simplifies the actions-of

codegen and dllows- aity level of ne-si hg in the plantree. Since codegen- directly performs

the actions necessary to create and delete relations, -these are described in more detail

below.
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ndx name level J-- atir ]numb parent nest-ta-b-l
0 toy SCHEME ONTHEYLY 2 -1 -2
I color ATTRIBUTE CHAR 32 0 -2
2 name ATTRIBUTE CHAR 32 0 -2
3 child SC__EME ON.THEFLY 3 -1 -2
4 name ATTRIBUTE CHAR 32 3 -2

5 age ATTRIBUTE INT 2 3 -2
6 toys ATTRIBUTE PREVDEFINED 2 3 0
7 project SCHEME ON-TtIEYLY 2 -1 -2
8 name ATTRIBUTE CHAR 32 7 -2
9 number ATTRIBUTE INT 2 7 -2
10 emp SCHEME ON_-T HEFLY 5 -1 -2
11 name ATTRIBUTE CHAR 32 10 -2
12 age ATTRIBUTE INT 2 10 -2
13 dno ATTRIBUTE INT 2 10 -2
14 children ATTRIBUTE PREVDEFINED 3 10 3
15 projects ATTRIBUTE PREV.DEFINED 2 10 7
16 manufacturer SCHEME ONTHELY 3 -1 -2
17 location ATTRIBUTE CHAR 32 16 . -2
18 name ATTRIBUTE CHAR 32 16 -2
19 phone ATTRIBUTE INT 2 16 -2
20 product SCHtEME ONTHE-FLY 3 -1 -2
21 name ATTRIBUTE CHAR 32 20 -2
22 price ATTRIBUTE FLOAT 4 20 -2
23 manufacturers ATTRIBUTE PREV.DEFINED 3 20 16

Figure 3.12. Contents of Sym.table

3.4.3.1 Operation of Code Generator for CreateRel. When codegen encoun-

ters a plan node where the method is "CREATE.REL", it creates the files describing the

relation definitions. As an example, Appendix C shows the files that describe the rela-

tion definitions for the employees relation. In addition, codegen creates a batch file called

compile-schemas which, when executed, will compile the relation definitions.

3.4.3.2 Operation of Code Generator for DropRel. When codegen encounters

a plan node where the method is "DROP EL", it checks both ReLtable and Sym-table

to see if the relation schemn is a. defining scheme for another relation or if it is used within

another scheme definition. If it is not being used, codegen deletes the contents of the

relation, removes the corresponding scheme definition files, and deletes the scheme from
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the symbol table. After all appropriate schemas have been deleted, codegen deletes the

relation from the relation table.

3.5 Summary

This chapter described how nested relations are represented in Triton using the con-

structs of the E programming language. Following this description, ench of the methods

implemented in this research effort were discussed. Finally, the chapter concluded with a

look at the operation of Triton's code generator. Using the access and operator methods

presented in this chapter, the following chapter evaluates the performance of the nested re-

lational model versus the relational model and discusses the advantages and disadvantages

of using the EXODUS toolkit in the development of the Triton system.
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IV. Analysis and Evaluation

4.1 Overview

As stated in Chapter 1, the Triton system is intended to be the backend storage

component for non-standard database applications, such as CAD, CASE, or OIS tools.

The first application for the Triton system is the representation of a particular CASE

methodology, the USAF IDEFo Structured Analysis language (22). Morris (23) defined a

nested relational model and c relational model representation for IDEFo. As a result of

his analysis, he speculated that the speed of query execution for the NRM representation

would be faster than that of the relational representation. The goal of this chapter is to

assess Morris' speculation by implemeiting both NRM and relational representations in

the Triton system, and comparing query performance in terms of query generation and

execution times. We found that in both areas, the nested representation outperformed the

relational version in terms of speed, particularly in code generation time. Following this

comparison, we discuss the advantages and disadvantages of using the EXODUS toolkit

for the development of the Triton system.

4.2 Comparison of the NRM and Relational Representations of the IDEFo Language Data

4.2.1 Schema Definitions. Using SQL/NF CREATE TABLE commands, the schema

definitions for the relational and nested relational representations of the IDEFo Language

Data are given in Appendices J and K, respectively. At the outermost level, only one

SQL/N1 CREATE TABLE command is needed for the NRM representation since all

IDEF0 language data is contained in one table. The data used to fill these tables is the

same data used by Morris (23).

Because the interface between the F .L/NF front end and the backend of the Triton

system is not yet developed, the SQL/NF CREATE TABLE commands were not used to

generate the E language structures (the .e and .h files) that describe the NRM and relational

representations of the IDEF0 language data. Instead, the system catalogs were filled with

data describing the schema of the two representations, and the E language structures of

both representations were automatically generated using the create-rel method described
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in Chapter 3. Even without the use of the SQL/NF front end, generation of the E language

structures was fairly straightforward.

4.2.2 Queries Used in this Comparison. Morris identified seven actions the CASE

application tool might request from the database. These are:

1. Create all database tables

2. Load all database tables

3. Erase all database tables

4. Extract all data in database

5. Extract all drawing data for a particular sheet (diagram)

6.. I'xtract-data dictionary information for a particular activity

7. Extract data dictionary information for a particular data element

The-last three activities (queries) in this list were selected for the comparison presented in

this chapter, since the majority of the application program's queries will probably be one

of these three.

Morris (23) presented the SQL/NF descriptions of each of these queries. Accord-

ing -to his analysis, the relational representation requires eight subqueries to extract all

drawing-data for a particular sheet, whereas only one query is needed to extract the same

information from the NRM database. In the same fashion,-six subqueries are required in

the-relational version as compared to one query in the nested version to extract activity

data dictionary information. To extract data element data dictionary information, twelve

subqueries are required in the relational version and one query is needed in the nested

version.

.4.2.3 Methodof Comparison. The two representations were compared with respect

to code generation time and query execution time. Each query was-generated and executed

twenty-times, and the minimum, maximum, variance, and average were calculated for each

of these twenty runs. All reported times are in seconds, and all runs were accomplished on

a Sun 3 workstation at approximately the same level of workload.
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Table 4.1. Code Generation Times for Relational Drawing Data Query
Subquery# Min Time Max Time Variance] Average Time]

1 3.06 3.22 0.002080 3.092
2 2.36 2.50 0.000779 2.390
3 3.00 3.18 0.002378 3.021
4 3.00 3.12 0.001873 3.021
5 3.00 3.14 0.000938 3.017
6 2.36 2.50 0.000825 2.384
7 3.00 3.16 0.001831 3.029
8 4.28 4.42 0.001401 4.307

Total 24.261

Table 4.2. Code Generation Times for Relational Activity Data Dictionary Query
Subquery # Min Time Max Time Variance Average Time

1 2.44 2.58 0.002521 2.465
2 2.34 2.48 0.000922 2.362
3 2.54 2.88 0.006496 2.573
4 3.02 3.16 0.002152 3.054
5 3.02 3.14 0.001301 3.038
6 3.78 3.94 0.002294 3.819

Total 17.311

4.2.4 Comparison of Code Generation Times. Table 4.1 gives the code generation

figures for the relational version of the drawing query. These are the figures obtained by

running codegen to generate the code to implement the drawing query. Note that eight

subqueries are needed, so the total gives the average total query generation time for the

entire query. In the same fashion, Tables 4.2 and 4.3 give the code generation figures for the

relational versions of the activity and data element data dictionary queries, respectively.

For the nested version, since no subqueries are needed to extract the drawing data, activity

data dictionary information and data element data dictionary information, each of these

three retrievals involve only one query. Table 4.4 gives the code generation figures for all

three queries. The low variance validates the fact that workload is about the same across

the board for all runs.

Table 4.5 compares the code generation times for the relational version against the
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Table 4.3. Code Generation Times for Relational Data Element Data Dictionary Query
Subquery # Min Time Max Time Variance] Average Time

1 2.38 2.54 0.001906 2.413
2 2.32 2.54 0.004762 2.366
3 2.34 2.50 0.001057 2.374
4 2.36 2.58 0.003667 2.386
5 2.98 3.10 0.000733 2.992
6 2.84 3.00 0.003225 2.876
7 2.84 2.98 0.001806 2.858
8 2.34 2.46 0.000711 2.355
9 2.34 2.46 0.007368 2.350
10 2.94 3.16 0.002706 3.033
11 2.92 3.08 0.002754 2.968
12 3.02 3.16 0.000972 3.034

Total 32.005

Table 4.4. Code Generation Times for Nested Queries
Query Min Time Max Time Variance Average Time

Drawing Data 7.40 7.66 0.006349 7.475
Activ Data Dict 3.10 3.26 0.001704 3.131

Data Elem Data Dict 6.06 6.22 0.002748 6.103

nested version for each of the three queries. Note that for each query, the generation time

for the nested version takes less than one third the time for the equivalent query in the

relational version. The difference in code generation times can be attributed to two factors:

one, the relational version requires several subqueries to extract needed information and

two, the increased complexity of the plan trees for the relational versions of the queries

adversely impacts the speed of the code generator. Each of these factors is examined, in

turn, below.

The fact that there are many subqueries needed in the relational version means

that many functions of the code generator must be duplicated for each subquery, such as

opening the output file to hold the generated query, checking to see if the main program

should be generated, and, if it is, generation of the main program. These actions may seem
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Table 4.5. Comparison of Code Generation Times
Query Relational Generation Time Nested Generation Time

Drawing Data 24.261 7.475
Activ Data Dict 17.311 3.131

Data Elem Data Dict 32.005 6.103

trivial, but can increase the run time of the code generator for queries made up of many

subqueries.

Perhaps the most significant contribution to the code generation time is the com-

plexity of the query's plan tree. In the relational version, there are 40 tables that make up

the database, as compared to only one table in the nested version. For both the relational

and nested versions, each table involved in a query must have at least one filescan node in

the plan tree. Thus, queries in the relational version are represented as multi-node plan

trees, with filescans for each table in the query and join nodes connecting them. However,

the plan trees in the nested version of the queries contain only one filescan node, since

all information is selected and projected from one table. The code generator sets up a

separate iterator for each filescan and join node in the plan tree. Clearly, for multi-node

plan trees, the job of codegen is much more involved. A good assumption seems to be that

this complexity accounts for a large portion of the higher code generation times for the

relational version as compared to the nested version.

The fact that the code generator always checks for the existence of sublist pointers

in list nodes is a design characteristic that hinders the relational version, since all sublist

pointers are null. However, elimination of this check would not make up the huge difference

in code generation times.

4.2.5 Comparison of Query Execution Times. Table 4.6 presents the query exection

figures for the relational version of the drawing query. Note that eight subqueries are

needed, so the total gives the average total time to execute the entire query. In the same

fashion, Tables 4.7 and 4.8 present the query execution figures for the relational versions of

the activity and data element data dictionary queries, respectively. Table 4.9 presents the
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Table 4.6. Execution Times for Relational Drawing Data Query
Subquery # Min Time Max Time Variance I Average Time

1 0.04 0.30 0.003583 0.094
2 0.06 0.40 0.004901 0.172
3 0.06 0.30 0.003954 0.122
4 0.06 0.18 0.001536 0.091
5 0.04 0.28 0.003491 0.098
6 0.04 0.18 0.002454 0.083
7 0.04 0.38 0.006732 0.165
8 0.04 0.2q 0.002173 0.084

Total 0.660

Table 4.7. Execution Times for Relational Activity Data Dictionary Query

Subquery # Min Time Max Time Variance I Average Time

1 0.02 0.10 0.000500 0.045
2 0.02 0.04 0.000067 0.024
3 0.04 0.14 0.000854 0.073
4 0.06 0.54 0.009663 0.170
5 0.08 0.32 0.0C3074 0.140
6 0.06 0.22 0.002754 0.108

Total 0.702

NRM version query execution figures for the drawing query, activity data dictionary query,

and the data element data dictionary query. Again, the low variance is a good indication

that the workload was the same across the board for all runs.

Table 4.10 compares the query execution times for the relational version against the

nested version for each of the three queries. As with code generation, the nested query

exection time is less than the relational query execution time. Thb difference in query

execution time can be attributed to two factors: one, the large number of joins in the

relational version, and two, increased disk access time due to a lack of clustering in the

relational version.

As stated earlier, all information is contained in one table in the nested version,

whereas the relational version breaks the IDEF0 language data into 40 normalized tables.
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Table 4.8. Execution Times for Relational Data Element Data Dictionary Query
Subquery # Min Time Max Time Variance Average Time

1 0.06 0.20 0.001915 0.121
2 0.04 0.22 0.002504 0.071
3 0.04 0.18 0.001637 0.075
4 0.06 0.26 0.002580 0.103
5 0.04 0.16 0.001746 0.081
6 0.06 0.24 0.002942 0.095
7 0.06 0.18 0.001637 0.095
8 0.04 0.16 0.001853 0.080
9 0.04 0.14 0.001246 0.084
10 0.08 0.34 0.003515 0.119
11 0.12 0.32 0.002699 0.194
12 0.14 0.24 0.000500 0.145

Total 1.263

Table 4.9. Query Execution Times for Nested Queries

Query Min Time Max Time Variance I Average Time
Drawing Data 0.48 1.00 0.024399 0.551

Activ Data Dict 0.52 0.86 0.004037 0.695
Data Elem Data Dict 0.74 0.92 0.001367 0.769

Each time data is correlated between two or more tables, a join is executed. While no

joins are required in the nested version (since all data is contained in one table), some

of the relational subqueries require as many as four joins. As stated in Chapter 3, the

join method implemented is a nested loops join method, which is not very efficient. For

each tuple of one relation, each tuple of the second relation is checked to see if the join

criteria are met. A more efficient algorithm such as a sort-merge join or a hash join would

probably speed up the execution time of the relational version. However, even with the

speedup realized with a more efficient join algorithm, the execution time of the relational

version would probably still exceed that of the nested relational version, since no joins are

required in the nested relational version. The difference in execution times is not as great

as expected, probably due to the limited number of tuples in the relational tables. As the
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Table 4.10. Comparison of Query Execution Times
Query Relational Execution Time Nested Execution Time

Drawing Data C.660 0.551
Activ Data Dict 0.702 0.695

Data Elem Data Dict 1.263 0.769

size of the database grows, the execution times should increasingly favor the nested version

of the database.

The second reason for the faster execution of the nested queries is that disk access

times are longer for relational queries since tables are not automatically clustered on disk.

The EXODUS storage manager automatically clusters tuples of a collection on disk to

decrease access time. Of course, this means that attributes in the tuples are clustered,

including relation-valued attributes. Since the nested version has only one overall table

(with several nested tables), all data in the nested version should theoretically be clustered

on disk. However, in the relational version, no explicit clustering is specified. The EXODUS

storage manager allows "near" hints as to how to cluster data, but none are specified for

the relational version. If these are used, the execution time for the relational version might

realize some speedup.

4.2.6 Summary of Comparison. The goal of this comparison was to demonstrate

the empirical advantage of the NRM over the relational model for the storage and retrieval

of complex data. This advantage was demonstrated by comparing the two models on code

generation time and query execution time. In both areas, the nested version outperformed

the relational version, particularly in code generation time. However, between generation

and execution time, execution time is most important. This is because queries will be

generated once, but will be executed many times. However, the performance of both

activities must be considered, since both play a crucial role in determining the processing

speed of the Triton system.
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4.3 Evaluation of the EXODUS Toolkit in this Research Effort

Implementation of a DBMS is not a trivial undertaking, but the use of extensible

systems has eased some of the burden of this task. The use of the EXODUS extensible

toolkit reduced the development time of the Triton nested relational database system.

The following subsections present the advantages and disadvantages of using the EXODUS

toolkit in the development of the Triton system by specifically evaluating the following:

* collections

* classes

* persistence

* data representation

e optimizer generator

* storage manager

4.3.1 Collections. The Triton system is built on the nested relational data model,

allowing relation-valued attributes in relations. The nested relational data model is mapped

very nicely using the collection generator class supplied by EXODUS in the E program-

ming language. Relation-valued attributes are represented using collections of collections.

Unfortunately, EXODUS only provides the capability for sequential scanning of collections,

making access via a search key slow for large relations. The only way around this short-

coming is to build indexes on every frequently accessed or sufficiently large relation and

nested relation.

The E programming language does not permit subclasses to be derived from the

collection class, which is a limitation. Since a collection is an unordered group of objects,

assume we want to derive a subclass of the collection class called ordered-collection, which

is an ordered group of objects. E does not allow this derivation from the collection class.

A good performance aspect of the collection class is that items in a collection are

clustered on disk, including subcollections. This automatic clustering reduces access time

and frees the implementor of having to worry about the grouping of data on disk.
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4.3.2 Classes. The use of classes is an excellent object-oriented technique for hiding

the actual representation of data and allowing access to subobjects through predefined

constructor and member functions. The use of generator classes should prove very useful

in the development of special indexing techniques for the Triton system. This is because a

generic index (such as B+-tree) can be developed using a generator class which takes the

type as a parameterized input. A specific index is then instantiated for a particular type

using the generator class specification.

4.3.3 Persistence. In E, persistent objects are declared explicitly by using the key-

word persistent before the declaration of the object. However, only db types can be

declared persistent, since the use of a db type specifies that the object is a disk object

as opposed to a main memory object. Unfortunately, every subcomponent of a dbclass

must be a db type, which can cause some problems if the database implementor chooses to

change a main memory class to a persistent class; not only does the class have to be changed

to a dbclass, but all subobjects in the class must be changed to their db counterparts.

4.3.4 Data Representation. As stated in Section 4.3.1, nested relations are conve-

niently mapped using the E collection class by mapping them directly into the underlying

programming language. This allows the relation definitions (the *.e and *.h files) to be

compiled into object files using the E compiler. Compiled queries are linked with the

object files containing the relation definitions and executed to perform the query. The

advantage of this method is that queries are executed quickly, since they are in machine

code. However, the long compilation and linking time makes this method prohibitive for

dealing with ad hoc queries.

4.3.5 Optimizer Generator. At the present time, Triton's optimizer component has

not been developed. However, the intention is to use the EXODUS optimizer generator to

generate this component. The EXODUS optimizer generator takes as input (1) a set of

operators, (2) a set of methods that implement the operators, (3) transformation rules that

describe equivalence-preserving transformations of query trees, and (4) implementation
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rules that describe how to replace an operator with a specific method. Using these rules,

a specific optimizer is generated for the particular application.

We chose to use the EXODUS optimizer generator for Triton because the relational

algebra used by the system lends itself to EXODUS' rule-based method. This modular

approach to database development will reduce the amount of code required for implemen-

tation of the Triton system. The only unique code Triton's developers will need to write

will be the additional functions that are called by the optimizer when implementing a

specific operator or access method. For example, take the following implementation rule:

project (loops-join (1,2)) by loops-join (1,2) combine-ljp;

This means that if there is a loops-join followed by a projection, it can become a special

case of loops-join that will perform the join and the projection in the same step. To do

this, the function combine-ljp is called to combine the projection list and the argument list

of the loops-join. The function combine-ljp is an example of the code that must be written

by the Triton system developers. However, this is far less involved than developing an

optimizer from scratch. With the use of accurate cost functions, the geneiated optimizer

should perform as well as a custom-built one.

4.3.6 Storage Manager. The use of the EXODUS storage manager greatly reduced

the development time of the Triton system by freeing tL! developer from worrying about

Triton's storage component. The storage manager's procedural interface allows access to

database objects without having to know how they are actually being manipulated. As

an example, persistent objects are automatically mapped to permanent storage locations

through the use of the persistent keyword. Data clustering is performed by using the

collection class and is transparent to the developer. Access to collections of objects is pro-

vided by the E programming language via built in procedure calls to the storage manager,

such as scan, in ... new, and delete.

4.3.7 Overall Evaluation of the EXODUS Toolkit. EXODUS was very helpful in the

development of the Triton system. In particalar, the E programming language elegantly
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maps nested relations using the collection class. While EXODUS only supplies sequential

access to collections, implementation of indices should be simple using generator classes.

The storage manager handles persistence and automatically clusters nested relations on

disk. In addition, the storage manager's procedural interface made interaction with the

storage manager virtually transparent. Use of the EXODUS optimizer generator should

greatly reduce the time it takes to create Triton's optimizer.

4.4 Summary

The first half of this chapter demonstrated the viability of the nested model by

compaiing the performance of the nested and relational representations of IDEF 0 language

data based on code generation time and query exection time. In both areas, the nested

version performed faster. The second half of this chapter discussed the advantages and

disadvantages of using the EXODUS toolkit in the developement of the Triton nested

relational database system.
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V. Conclusions and Recommendations

5.1 Overview

This chapter summarizes and draws conclusions about the work presented in this

thesis. Recommendations for further work as it pertains to the Triton nested database

system is also discussed.

5.2 Summary of Research

The goal of the research presented in this thesis was to develop a backend to the

Triton nested database system to manipulate the data in the database as specified by

some query. The goal was not to provide a plethora of access methods, but to give Triton

the ability to process queries of any type (except for data restructuring queries) and to lay

the foundation for future work in this area.

The work accomplished in this research effort may be summarized as follows:

1. Design and implementation of the operator methods of the Colby algebra to handle

multiple levels of nesting, including:

* The filescan method that implements a project and/or a select

* The loops-join method that implements a join as well as a project and/or select

2. Design and implementation of the access methods to modify data in the database,

including:

* The store-values method that adds data to a relation at any level or levels of

nesting

* The modify method that modifies data in a relation at any level or levels of

nesting

* The delete method that deletes data from a relation at any level or levels of

nesting

* The create-rel method that adds a new relation to the database
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9 The drop-rel method that deletes a relation from the database

3. Design and implementation of the code generator, codegen, to implement the operator

and access methods

4. Testing of methods and code generator

5. Compat.son of the performance of the nested relational model versus its normalized

(1NF) version using the operator methods and code generator:

e Development of an E representation of a sample set of relational IDEF0 language

data (23)

9 Development of an E representation of nested relational IDEFo language data (23)

* Design of programs to load data into both representations of the IDEF0 language

data

* Creation of queries for both representations to evaluate performance of the NRM

against the traditional relational model

* Comparison of the NRM against the relational model based on code generation

time and query execution time

6. Discussion of the advantages and disadvantages of using the EXODUS toolkit in this

research effort

5.3 Conclusions

By using Triton to store a nested and relational representation of CASE data and

using the methods implemented in this research to query that data, we folnd that the

nested relational model outperforms the relational model in termb of code generation time

and query execution time. These results demonstrate the viability of the nested relational

model for the representation of complex data. In addition, the EXODUS toolkit provided

several necessary tools that greatly reduced the development time of the Triton system.

However, the use of the EXODUS toolkit did constrain this development, and future efforts

must attempt to overcome these constraints. With this in mind, the following section

recommends possible areas for improvement in the Triton system.
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5.4 Recommendations

As stated earlier, the purpose for research presented in this thesis was to give Triton

the ability to process queries of any type (except for data restructuring queries) and to

lay the foundation for future work in this area. Actions must be taken to bring the Triton

query processing system up to full capability. These actions include:

" Design of the nest and unnest operator methods to implement the data restructuring

actions of the Colby algebra

" Generation of the optimizer to properly optimize the query tree and call appropriate

methods

Additional actions need to be taken to give Triton more than just a cursory set of

operator and access methods. This includes:

* Design of additional operator methods, such as merge-join, or index-join to more

efficiently handle the join operator

* Development of indexing techniques and access methods to use them:

- I recommend looking at Bertino and Kim's work in this area (3), but especially

recommend implementing a similar indexing strategy as the one used by the

ANDA system (11)

As a performance issue, sequential access to the system catalogs is inefficient. I

suggest either establishing indices intc the catalogs, or implementing schema information

as persistent structures in main memory, as is done in the Ariel system (14). This would

speed up query execution substantially, especially as the size of the system catalogs grows.

I recommend that future work address the possibility of making a query interpreter in

addition to the code generator. This would make testing easier on application developers.

The interprcter would have to be linked with the schema definition files for all relations in

the database. If such an effort is undertaken, the developer should consider implementing

the methods as a class hierarchy of plan objects as is done in Ariel (14).
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Appendix A. Colby Relational Algebra

The use of the nested relational model requires the development of operators to

manipulate nested data. Latha S. Colby (9) devised a recursive algebra for nested relations

that builds on the traditional relational algebra operators. Her operators allow the retrieval

of information from any level of nesting in a relation without first "flattening out" the

relation to fit "- standard relational model. To pc, mit nesting, Colby employed set

operators and redefined the select (a), project (7r) and join (M) operat-s of the relational

model and introduced two new operators, nest (v) and unnest (gt). ror the purposes of

this exposition, I assume that the select, project and join operators are understood as they

apply to non-nested relations.' Their use by Colby is defined below.

A.1 Select (a).

The select operator is used to extract tuples from the relation that satisfy a specific

selection criteria. Its structure is defined as

o (relationcondition (select list))

The select list is used to indentify conditions on relation-valued attributes (RVAs). The

select list can be null or has the following recursive form:

(RVAcondition (select list))

For example, using the database schema provided in Figure 1.3, a query to find all

the employees who are older than 35 that have male children is written as

Or (employeeemp_age>35 (children,,.,=M))

which yields the relation shown in Figure A.1.

'For a definition of the relational algebra operators for non-nested relations, see (8).

A-1



dept emp-name emp-age emp-ssn children
I child-name child-ageJ sexJ

Adv T. Therrien 43 555-12-3434 John 13 M

I vlatthew 11 M
Pers C. Dunlap 37 624-35-8152 George 5 M

Figure A.1. Employees Over 35 With Male Children

rmpname _ child.name

John Smith Jeramie
Todd

Michael Taylor Susan
Tina Therrien Laura

John
Matthew

Carla Dunlap George
Janis

Figure A.2. Project Out Employee and Children Names

A.2 Project (r).

The project operator is used to extract specific attributes of a relation. Its structure

is defined as

ir ((project list) relation)

where a project list indentifies the list of attributes to be extracted from the relation. If

the project list contains any relation-valued attributes, those attributes may have their

own project list. For example, a qu ry to retrieve all employees' names and their childrens'

names from the employee relation s written as

7r ((empname, children (child.l.ame)) employee)

which yields the relation shown in Figure A.2.
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name classes
course [ grade

Jeramie Math B
Science B+

Cheryl Chemistry B+

Comp Sci A-
Math B

Laura Poli Sci C
John Biology B+

English B-
Mike Physics A

Math A
Matthew Chemistry B+

Science B
English A-

Figure A.3. The Student Relation

A.3 Join(N).

The join operator joins a relation to another relation or to any relation valued at-

tribute (RVA) of a relation. Its structure is as follows:

N0 (relation, (join path), relation 2)

The condition is specified in the 0 portion of the query. If the join path is null, the two

relations will be joined at the highest level. However, the join path may identify the level

of relation1 where the join is to take place. The join path is defined as:

(RVA of relation1 (join path of RVA of relation,))

For example, suppose there is a separate student relation as shown in Figure A.3 in

addition to the nested employee relation. The query to join the children attribute of the

employee relation to the student relation where children namne is equal to the student name

is

tchildnamc=name (employee (children), student)

which yields the relatio, shown in Figure A.4.
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dept emp-name jempage emp-ssn children
child-name child-ageJ sex [ classes

course I grade

Mktg Smith 27 237-46- Jeramie 8 M Math B
3567 Science B+

Adv Therrien 43 555-12- Laura 18 F Poli Sci C
3434 John 13 M Biology B+

English B-
Matthew 11 M Chemistry B+

Science B
English A-

Figure A.4. The Employee Relation Joined (on Children) to the Student Relation

dept I emp-name emp-age emp-ssn I child-name child-age sex

IMktg J. Smith 27 237-46-3567 Jeramie 8 M
Mktg J. Smith 27 237-46-3567 Todd 4 M
Rsrch M. Taylor 31 395-73-8901 Susan 3 F
Adv T. Therrien 43 555-12-3434 Laura 18 F
Adv T. Therrien 43 555-12-3434 John 13 M
Adv T. Therrien 43 555-12-3434 Matthew 11 M
Pers C. Dunlap 37 624-35-8152 George 5 M
Pers C. Dunlap 37 624-35-8152 Janis 3 F

Figure A.5. The Flat Employee Relation

A.4 Nest (.

The nest operator is a restructuring operator that groups certain specified attributes of a

relation into a nested version of the relation. Its structure is

v attribute list -- RVA name (relation)

where the attribute list spec:.ies the attributes to be nested under the title of the RVA name.

For example, a query to take the flattened version of the employee relation as shown in

Figure A.5 and nest child-name, child-age and sex into a relation valued attribute called children

would be written as

v child-name, childage, sex -- children (employee)
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dept emp-name f emp-age emp-ssn children
I childname] child-age I sex

Mktg J. Smith 27 237-46-3567 Jeramie 8 M
_ _Todd 4 M

Rsrch M. Taylor 31 395-73-8901 Susan 3 F
Adv T. Therrien 43 555-12-3434 Laura 18 F

John 13 M
Matthew 11 M

Pers C. Dunlap 37 624-35-8152 George 5 M
1 1 Janis 3 F

Figure A.6. The Nested Employee Relation

which creates the nested version of the employee relation as shown in Figure A.6.

A.5 Unnest (jt).

The unnest operator is the inverse operation of the nest operator. It flattens out a relation

by duplicating the atomic attributes of a tuple for each occurance of the relation valued attributes.

Its structure is as follows:

p relation-valued attribute (relation)

To illustrate its operation, a query to take the nested version of the employee relation as

shown in Figure A.6 and flatten it would be written as:

p children (employee)

creating the unnested or flattened version of the employee relation as shown in Figure A.5.
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Appendix B. Definition of Data Structures

The design and implementation of the Triton nested database system utilizes several

data structures first developed by Mankus (21) that I modified for my use. Because these

structures play such a vital role in understanding the design of my operator and access

methods, each is explained in detail.

B.1 Plan Node

The output of the query optimizer is a pointer to the plan tree that structurally

represents the user's request. Figure B.1 shows the structure of a plan node.

The fields of the plan node are used as follows:

* method - specifies the operator or access method to be used (for example filescan,

loops-join, create-rel, or store-values, to name a few)

9 argument.name - the name of the input relation (used only if the method is

FILESCAN)

* argument.reltype - the type of the input relation (used only if the method is

FILESCAN)

* argument.struct-num - an integer field that records the greatest structure number of

the temporary relation templates that hold the intermediate data for answering the

query

* argument.pred - a pointer to a predicate tree of pred nodes which represents the

conditions on the highest level of the nested relation

* argument.list - a linked list of list nodes which identify attributes

& argument.aux-pred - an additional place to hang a condition (used only in the

LOOPS-JOIN method when a selection is simultaneously taking place)

* argument.aux.list - an additional place to hang a linked list of list nodes (used only

in the LOOPS-JOIN method when a projection is simultaneously taking place)

* input[O] and input[l] - pointers to plan nodes
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method

name

a reltype
rg struct-num

u pred
m
e list
nt aux-pred

aux-list

input[O] input[l]

Figure B.1. A Plan Node

constant-oper on-right

1 ref.name ref-name i
ef uflag u.flag g

h
t optype optype t

Figure B.2. A Pred Node

B.2 Pred Node

The pred and aux-pred portions of the plan node can each point to a tree of pred

nodes that represent query conditions. Figure B.2 shows the structure of a pred node.

The fields of the pred node are used as follows:

" oper - identifies the operator which can be AND, OR, NOT, LES (less than), GRT

(greater than), LEQ (less than or equal to), GEQ (greater than or equal to), EQL

(equal to), and NEQ (not equal to)

" constant-on-right - boolean variable to identify whether the value stored in the right

operand is a constant or a variable

" ref-name - records the relation name that the attribute identified in the operand

portion pertains to
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* uflag - a union flag to record whether the value stored in the op-type field is a

character pointer, integer, float or a pointer to another pred node

" op.type - holds either a character pointer, integer, float, or a pointer to another pred

node

The pred node has a left and right operand, which are inputs to the operator. All

operators are binary except for the NOT operator, which is unary and only uses the left

operand. If the operator is an AND, OR, or NOT, the op-type holds a pointer to another

pred node; otherwise, it will hold either a pointer to a character, an integer value, or a

float value. The left operand holds the name of the attribute for the condition, while the

right operand holds the value of a constant or may hold the name of another attribute in

the relation. If the latter case is true, the value of the constant-on-right field would be

false.

To demonstrate the structure of a predicate tree, the predicate

emp-age>40 and dept="Marketing"

is structurally represented in Figure B.3. In this figure, two pred nodes are used to represent

the two conditions, while a third pred node connects these conditions with an AND. Since

the two attributes emp-age and dept are being compared to a constant value, the value of

constant-on.right for both of the nodes at the bottom of the tree is true. The left operand

is always the name of an attribute, thus the left op.type field will always hold a character

value, which is the name of the attribute.

B.3 List Node

The list and aux-list portions of the plan node can each point to a linked list of list

nodes which represent attribate lists for use in performing projections. Figure B.4 shows

the structure of a list node.

The fields of the list node are used as follows:

* attr - points to an attrdesc node which holds a description of the attribute and is

defined in detail below
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AND FALSE

PRED PRED

GRT TRUE E QL TRUE
employee employee
CHAR I NT CHAR CHAR

emp-age 40 dept Marketing

Figure B.3. A Predicate Tree

attr cond sublist next

Figure B.4. A List Node

e cond - points to a predicate tree of pred nodes (only used if the attribute is relation-

valued and there is a selection condition that applies to the attributes of the relation-

valued attribute)

* sublist - points to a sublist of list nodes (only used if the attribute is relation-valued

and only some of the attributes of the relation-valued attribute are being projected

out)

* next - points to the next list node in the attribute list

As stated above, the list structure represents an attribute list. Relation-valued at-

tributes may have a condition (which points to a predicate tree of pred nodes) and a sublist

(which points to the attributes of the relation-valued attribute that are to be projected

out). f the attribute is relation-valued and the sublist is null, all attributes of the relation-

V akle -ibute are to be projected out. Through the use of sublists, projections can be

represented at any level of nesting in the relation. The list structure can be used to record

a selection, projection, or both a selection and a projection.
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name

type

size

value

rvatype

parentrel

project

Figure B.5. An Attrdesc Node

B.4 Attrdesc Node

The attr field of the list node points to an attrdesc node which holds information

about the attribute. Figure B.5 shows the structure of an attrdesc node.

The fields of the attrdesc node are used as follows:

9 name - the name of the attribute

* type - the type of the attribute (CHAR if the attribute is a character pointer, INT

if the attribute is an integer, FLOAT if the attribute is a float, or PREVDEFINE D

if the attribute is relation-valued)

* size - the number of characters if the type is CHAR, the number of bytes if the type

is INT or FLOAT (if the type is PREVDEFINED, then size is 0)

0 value - holds a character string if the type is CHAR, an integer if the type is INT,

a float if the type is FLOAT (used only to specify the value of an attribute if a new

tuple is being added to the relation or if the value of the attribute is being changed)

* rvatype - holds the name of the type of tuple to be stored in the relation-valued

attribute (only used if type is PREV.DEFINED)

e parentrel - holds Ihe name of the relation to which this attribute belongs

* project - an integer value that holds the temporary relation number (used when a

temporary relation template is made to hold the intermediate results of a projection

or a join)
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Appendix C. Data for the Employees Relation

The following files specify the schema shown in Figure C.1 for the employees nested

relation. The employees relation is a collection of tuples of type emp. Children and projects

are relation-valued attributes of emp, and toys is a relation-valued attribute of children.

The employees relation is used in the body of this thesis to demonstrate the function of

the operator and access methods.

The schema for the nested employees relation is contained in a series of files. There

is a .e and a .h file describing the emp, child, toy, and project schemas. There is also a .e

and .h file describing the overall employees schema. The .h file contains the structure of

the relation, while the .e file contains the code to implement the constructor and member

functions. Separating the schemas into pairs of files was necessary to ensure the schemas

are not multiply defined if they are used more than once in a relation. In the code that

follows, only the .e file for the emp relation is given. In the interest of space and because

the implementation of the constructor and member functions for the child, toy, and project

relations are nearly identical, child.e, toy.e, and project.e are not given here.

children projects
name age dno toys Iage name name number

clrname

Figure C.1. Schema for the Employees Nested Relation

/* The following is the content of employee.h */

#ifndef EMPLOYEESH
#ifndef EMPH
#include "emp .h"
#endif

dbclass empRVA:collection[emp];

#define EMPLOYEESH
#endif
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1* The following is the content of employee.e *

#include <stream.h>
#include <stdio .h>

#ifndef EMPLOYEES-.H
#include "employees .h"
#endif

persistent empRVA employees;

1* The following is the content of emp.h *

#ifndef EMP-H
#ifndef CHILD-H
#include "child .h"
#endif

#ifndef PROJECT-H
#include "project .h"
#endif

dbstruct emp{
dbchar name [32];
dbint age;
dbint dno;
dbclass childRVA collection [child];
childRVA children;
dbclass projectRVA:collection[project];
proj ectRVA projects;

public:
emp (char *, int, int);
char * get-.nameo;
void change-.namne (char*)
mnt get-.ageo;
void change-age (int);
mnt get-dnoo;
void change-dno (int);
void print (emp*)

#define EMP.H
#endif
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1* The following is the content of emp.e *

#include <stream.h>
#include <stdio .h>

#ifndef EMP-.H
#include "emp .h"
#endif

emp::emp (char * nameAtom, int ageAtom, int dnoAtom){
dbchar * dest;J
dest = name;
while (*dest+ *nameAtom++);

age = ageAtom;I
dno = dnoAtom;

char * emp::get-.name()
dbchar * source = name;
char * dest = new char[32];
char * start = dest;
while (*dest++ =*source++);
return (start);

void emp::change-name (char *nameAtom){
dbchar * dest;
dest =name;

while (*dest++ *nameAtomr++);

mnt ernp::get-.age() f
return (age);

void emp:: change-age (mt ageAtom) f
age =ageAtom;

mnt emp::get-.dno() f
return (dno);
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void emnp: :change.dno (int dnoAtom){
dna = dnoAtom;

void emp::print (emp * emp-.ptr){
cout << form ("emp..name: %s\n", emp-.ptr->get-.nameo);
cout << form ("emp..age: Yd\n", emp-.ptr->get-.ageo);
cout << form ("ernp..dno: %d\n", emp-.ptr->get-.dnoo);
emp, & einp.ref-ptr *emp-.ptr;

iterate (child * child-ptr = emp-ref.ptr.children.scano)
child-ptr -> print (child..ptr);

iterate (project * project-.ptr = emp-.ref-ptr.projects.scano)
project..ptr -> print (project-.ptr);

1* The following is the content of child.h *

#ifndef CHILD.H
#ifndef TOY-.H
#include "toy .h"
#endif

dbstruct '.hild{
dbclass toyRVA:collection[toy];
toyRVA toys;
dbint age;
dbcnar name r2

pub~ic;
child (int, chir*)
mnt get-.ageo;
void chanc. e..age (int);
char * &et-.nameo;
void change-namne (char*)

vo4id print (child*)
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#define CHILDH

#endif

/* The following is the content of toy.h */

#ifndef TOYH
dbstruct toy {

dbchar color[32];
dbchar name [32];

public:

toy (char *, char *);
char * get-coloro;

void change-color (char *);
char * get.nameo;

void change-name (char *);
void print (toy *);

1* The following is the content of project.h */
/****** *******************************************

#ifndef PROJECTH
dbstruct project {

dbchar name [32];

dbint number;
public:

project (char *, int);

char * get.nameo;

void change-name (char *);
int get-numbero;
void change-numbe- (int);

void print (project *);

#define PROJECTH

#endif

C-5



Appendix D. Data for the Products Relation

The following files specify the schema shown in Figure D.1 for the products nested

relation. The products relation is a collection of tuples of type product. Manufacturers is

a relation-valued attribute of product. The products relation is used in the body of this

thesis to demonstrate the function of the loops-join operator method.

The schema for the nested products relation is contained in a series of files. There

is an .e and an .h file describing the product and manufacturer schemas. There is also an

.e and .h file describing the overall products schema. The .h file contains the structure of

the relation, while the .e file contains the code to implement the constructor and member

functions. Separating the schemas into pairs of files was necessary to ensure the schemas

are not multiply defined if they are used more than once in a relation. In the code that

follows, only the .e file for the product relation is given. In the interest of space and because

the implementation of the constructor and member functions for manufacturer are nearly

identical, the content of manufacturer.e is not given here.

name price manufacturers
location I name phone

Figure D.1. Schema for the Products Nested Relation

/* The following is the content of products.h */

#ifndef PRODUCTSH
#ifndef PRODUCTH
#include "product.h"
#endif

dbclass productRVA:collection[product];

#define PRODUCTSH
#endif
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/* The following is the content of products.e */

#include <stream.h>
#include <stdio.h>

#ifndef PRODUCTSH
#include "products.h"
#endif

persistent productRVA products;

/* The following is the content of product.h */

#ifndef PRODUCTH
#ifndef MANUFACTURERH
#include "manufacturer.h"
#endif

dbstruct product {
dbchar name [32];
dbfloat price;
dbclass manufacturerRVA:collection[manufacturer];
manufacturerRVA manufacturers;

public:
product (char *, float);
char * get-nameo;

void change-name (char *);
float get-priceo;
void change-price (float);
void print (product *);

#define PRODUCTH
#endif
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/* The following is the content of product.e *

#include <stream.h>
#include <stdio .h>

#ifndef PRODUCT..H
#include "product .h"
#endif

product::product (char * nameAtom, float priceAtom){
dbchar * dest;
dest = name;
while (*dest++ = *nameAtom++);
price = priceAtom;

char * product: :get-name()
dbchar * source =name;
char * dest new char[32];
char * start =dest;
while (*dest++ *source++);
return (start);

void product::change-.name (char *nameAtom){
dbchar * dest;
dest =name;
while (*dest++ = *nameAtom++);

float product::get-price()
return (price);

void product::change-.price (float priceAtom){
price = priceAtom;
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void product::print (product * productptr) {
cout << form ("product-name: s\n", product-ptr->get-name());
cout << form ("product-price: /f\n", productptr->get-priceO);
product & product-ref.ptr = * product.ptr;
iterate (manufacturer * manufacturerptr = productreflptr.

manufacturers. scan 0)
manufacturer.ptr -> print (manufacturer.ptr);

}

/* The following is the content of manufacturer.h */

#ifndef MANUFACTURERH
dbstruct manufacturer {

dbchar location[32];
dbchar name[32];
dbint phone;

public:
manufacturer (char *, char *, int);

char * getlocation);

void change-location (char *);
char * get-name);
void change-name (char *);
int get-phone(;
void change-phone (int);
void print (manufacturer *);

#define MANUFACTURERH
#endif
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Appendix E. Filescan Method

The following code implements the filescan query depicted in Figure 3.6 and described

in Section 3.3.1. In the Triton system, the code in this appendix would be written to a file

called query.e by the E code generator codegen to implement the query. The comments

that appear in the code in this appendix are not generated by codegen but have been put

in by the author to explain the operation of the filescan.

#include <stream.h>
#include <stdio.h>

#ifndef EMPLOYEESH
#include "employees.h"
#endif

extern persistent empRVA employees;

/* Temporary relation template -- holds the projected */
/* attributes of the toys relation. */

dbstruct tempi{
dbchar name[32];

public:
tempi (char *);
char * get-nameo;

/* Constructor function code for tempi */

tempi::templ (char * nameAtom) {
dbchar * dest;
desL name;
while (*dest++ = *nameAtom++);

B-i



/* Code for implementing member function of tempi */

char * templ::get-name() {
dbchar * source = name;
char * dest = new char[32];

char * start = dest;

while (*dest++ = *source++);
return (start);

}

/* ******************* ** ********* ***** ** ***** ** ***** *****

/* Temporary relation template -- holds the projected */
/* attributes of the children relation. */

dbstruct temp2 {
dbchar name [32];
dbint age;
dbclass tempiRVA:collection[templ];
tempiRVA templ-rels;

public:
temp2 (char *, int);

char * get.nameo;
int get-ageo;

/* Constructor function code for temp2 */

temp2::temp2 (char * nameAtom, int ageAtom) {
dbchar * dest;

dest = name;

while (*dest++ = *nameAtom++);
age = ageAtom;
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/* Code for implementing member functions of temp2 */

char * temp2::get-name() {
dbchar * source = name;

char * dest = new char[32];

char * start = dest;

while (*dest++ = *source++);

return (start);
}

int temp2::get-age() {
return (age);

}

/* Temporary relation template -- holds the projected */
/* attributes of the employees relation. */

dbstruct temp3 {
dbchar name[32];
dbint age;

dbclass temp2RVA:collection[temp2];
temp2RVA temp2-_rels;

public:

temp3 (char *, int);

char * get.nameo;
int get-ageo;

/* Constructor function code for temp3 */

temp3::temp3 (char * nameAtom, int ageAtom) {
dbchar * dest;
dest name;

while (*dest++ = *nameAtom++);

age ag1A~tomE

E -3



/* Code for implementing member functions of temp3 */

char * temp3::getname() {
dbchar * source = name;
char * dest = new char[32];
char * start = dest;

while (*dest++ = *source++);
return (start);

int temp3::get-age() {
return (age);

/, FILESCAN ITERATOR
/* */

/* This iterator will perform the filescan of the employees */
/* relation and will yield a pointer to the resultant projected */
/* tuple. (i.e. a pointer to a tuple of type temp3) "/

iterator temp3 * filescan-temp3()
{

/* scan the employee relation */

iterate (emp * left-tuple-ptrl = employees.scano)
{

/* selection condition *I

if (left-tuple-ptrl->get-age() > 30)

/* copy the projected atomic attributes from employees */
/* into temp3 */

temp3 * t3 = new temp3 (leftstuple-ptrl->get-nameO,
left-tuple.ptr->get-ageo);
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/* set up a reference pointer to descend one level of */
/* nesting in temp3

temp3 & temp3_ref t t3;

/* set up a reference pointer to descend one level of */
/* nesting iii employees
/***********4 ********************************************/

emp & left-source-ref1 = * lefttupleptri;

/* scan the children relation */
/ ** ****:k *************************/

iterato (child * left-tuple-ptr2 = leftsource-refl.
children.scano)

{

/* selection condition */

if (leftuple-ptr2->getage() < 5)
{

/* copy the projected atomic attributes from */
/* children into temp2 */

temp2 * t2 = in (temp3_ref.temp2_rels) new temp2
(lefttupleptr2->get-name(),
left-tupleptr2->getage());

/* set up a reference pointer to descend one */
/* level of nesting in temp2 */

temp2 & temp2_ref = * t2;

/* set up a reference pointer to descend one */
/* level of nesting in children */
/ ****** * ** ***************** **************** /
child & leftsource.ref 2 = * lefttuple.ptr2;
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/* scan the toys relation */

iterate (toy * left-tuple.ptr3 = left-source-ref2.
toys .scano)

{

/* copy the projected atomic attributes */
/* from toys into tempi */

tempi * ti = in (temp2_ref.templ.rels) new tempi
(left.tuple.ptr3->get-name());

}
}

/* yield the projected tuple, which is a pointer to a temp3 */

yield (t3);

MAIN PROGRAM */
/* The main program will call the filescan iterator and print out the */
/* contents of the projected and selected relation. */

main(0
{
iterate (temp3 * left-tuple-ptrl = filescan-temp30)

{
cout << form ("employees-name: %s\n",

left.tuple.ptrl -> getname));
cout << form ("employees-age: %d\n",

left-tuple-ptrl -> get-age0);

temp3 & left-source.ref1 = * left-tupleptrl;
iterate (temp2 * left-tuple-ptr2 = left-source.refl.

temp2_rels.scan())
{

cout << form ("children-name: s\n",
left.tuple.ptr2 -> get-name();

cout << form ("childrenage: Yd\n",
left.tuple-ptr2 -> get-age));

temp2 & left-source-ref2 = * lefttuple-ptr2;
iterate (tempi * left-tuple.ptr3 = left-sourceref2.
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templ..xels .scano)

cout << form ("toys-.name: ?.S\n"l,
left-.tuple-.ptr3 ->get-.nameO));
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Appendix F. Loops-Join Method

The following code implements the loops-join query depicted in Figure 3.7 and de-

scribed in Section 3.3.2. In the Triton system, the code in this appendix would be written

to a file called query.e by the E code generator codegen to implement the query. The

comments that appear in the code in this appendix are not generated by codegen but have

been put in by the author to explain the operation of the loops-join.

#include <stream.h>
#include <stdio.h>

#ifndef EMPLOYEES_1
#include "employees.h"
#endif

extern persistent empRVA employees;

/* Temp-rary relation template -- holds the projected */
/* attributes of the toys relation. */

dbstruct tempi {
dbchar name[32];

public:
tempi (char *);
char * get-name();

/* Constructor function code for tempi */

templ::templ (char * nameAtom) {
dbchar * dest;

dest name;
while (*dest++ = *nameAtom++);

}
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/* Code for implementing member function of tempi */

char * templ::get.name() {
dbchar * source = name;
char * dest = new char[32];
char * start = dest;
while (*dest++ = *source++);
return (start);

/* Temporary relation template -- holds the projected */
/* attributes of the employees relation. */

dbstruct temp2 {
dbchar name [32];
dbclass templRVA:collection[tempi];
tempiRVA temprels;

public:
temp2 (char *);
char * get-nameo;

/*** 'i*******************************.4****/

/* Constructor function code for temp2 */

temp2::temp2 (char * nameAtom) {
dbchar * dest;
dest = name;
while (*dest++ = *nameAtom++);
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/* Code for implementing member function of temp2 "1

char * temp2::get-name() {
dbchar * source = name;

char * dest = new char[32];

char * start = dest;

while (*dest++ = *source++);
return (start);

FILESCAN ITERATOR

1* This iterator will perform the filescan of the employees */
/* relation and will yield a pointer to the resultant projected */
/* tuple. (i.e. a pointer to a tuple of type temp2) */

iterator temp2 * filescan-temp2()

{

/* scan the employee relation */

iterate (emp * left-tuple-ptrl = employees.scano)
{

1* copy the projected atomic attribute from employees */
/* into temp2 */

temp2 * t2 = new temp2 (left-tupletptr->get-nameo);

/* set up a reference pointer to descend one level of */
/* nesting in temp2

temp2 & temp2_ref = * t2;

/* set up a reference pointer to descend one level of */
/* nesting in employees

en., & left.sourceref1 = * left-tuplejptrl;
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/* scan the children relation *1

iterate (child * left-tuple.ptr2 = left-source-refi.children.scano)
{

/* set up a reference pointer to descend one level of */
/* nesting in children

child & left-sourceref2 = * lefttuple-ptr2;

/* scan the toys relation */

iterate (toy * left-tuple-ptr3 = left-source-ref2.toys.scano)

{

/* copy the projected atomic attribute from toys */
/* into tempi */

tempi * ti = in (temp2_ref.tempi-rels) new tempi

(left-tuple-ptr3-' meo);
}

}

/* yield the projected tuple, which is a pointer to a temp2 */

yield (t2);

}

#ifndef PRODUCTSH

#include "products.h"
#endif

extern persistent productRVA products;
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/* Temporary relation template -- holds the projected */
/* attributes of the products relation. */

dbstruct temp3 {
dbchar name[32];
dbclass manufacturerRVA:collection[manufacturer];
manufacturerRVA manufacturers;

public:
temp3 (char *);
char * get.nameo;

/* Constructor function code for temp3 */

temp3::temp3 (char * nameAtom) {
bchar * dest;

dest = name;

while (*dest++ = *nameAtom++);
}

/* Code for implementing member function of temp3 */

char * temp3::get-name() {
dbchar * source = name;

char * dest = new char[32];
char * start = dest;

while (*dest++ = *source++);
return (start);

}
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/* FILESCAN ITERATOR
/* *

I* This iterator will perform the filescan of the products *1
/* relation and will yield a pointer to the resultant projected */
/* tuple. (i.e. a pointer to a tuple of type temp3) */
/********************************* ***** ****** **********************/

iterator temp3 * filescantemp3()
{

/* scan the products relation */

iterate (product * lefttupleptrl = products.scano)
{

/* copy the projected atomic attributes from products */
/* into temp3 *I

temp3 * t3 = new temp3 (lefttupleptrl->getnameo);

/* set up a reference pointer to descend one level of */
/* nesting in temp3 */

temp3 & temp3_ref = * t3;

/* set up a reference pointer to descend one level of */
/* nesting in products

product & left-sourceref1 = * left-tupleptrl;

/* scan the manufacturers relation */

iterate (manufacturer * left-tuple.ptr2 = left-source-refl.

manufacturers.scan())
{

/* copy the projected atomic attributes from manufacturers */

/* into the manufacturer relation-valued attribute of temp3 */

manufacturer * manufacturerptr = in (temp3_ref.manufacturers)

new manufacturer (left-tuple-ptr2->get-location(,
left-tuple-ptr2->get-name),
left-tupleptr2->get-phone(0);

}
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/* yield the projected tuple, which is a pointer to a temp3 */

yield (t3);

}

/* Temporary relation template -- holds the attributes */
/* of the join for the manufacturers relation-valued */
/* attribute of the join

dbstruct temp4 {
dbchar location[32];
dbchar name [32];
dbint phone;

public:
temp4 (char *, char *, int);

char * getlocationo;
char * getnameo;
int getphone);

/* Constructor function code for temp4 */

temp4::temp4 (char * locationAtom, char * nameAtom, int phoneAtom) {
dbchar * dest;

dest = location;

while (*dest++ = *locationAtom++);
dest = name;
while (*dest++ = *nameAtom++);

phone = phoneAtom;
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/* Code for implementing member functions of temp4 *1

char * temp4::get-location() {
dbchar * source = location;

char * dest - new char[32];
char * start = dest;
while (*dest++ = *source++);
return (start);

}

char * temp4::get-name()
dbchar * source = name;
char * dest = new char[32];
char * start = dest;
while (*dest++ = *source++);
return (start);

int temp4::get-phone()
return (phone);

}

/* Temporary relation template -- holds the attributes */
/* of the join at the join-level */

dbstruct tempS {
dbchar toys-name[32];
dbchar products-name [32];
dbclass temp4RVA:collection[temp4];
temp4RVA temp4_rels;

public:
tempS (char *, char *);
char * get-toys-nameo;
char * get-products.nameo;
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/* Constructor function code for temp5 */

tempS::tempS (char * toys-nameAtom, char * products-nameAtom) {
dbchar * dest;

dest = toys-name;
while (*dest++ = *toys-nameAtom++);
dest = products-naine;
while (*dest++ = *products-nameAtom++);

}

/* Code for implementing member functions of temp5 */

char * temp5::get-toys.name() {
dbchar * s-zc = toys-name;
char * dest = nez; char [32];
char * start = dest;
while (*dest++ = *source++);
return (start);

}

char * tempS::get-products-name() {
dbchar * source = products-name;

char * dest = new char32] ;
char * start = dest;

while (*dest++ = *source++);
return (start);

/* Temporary relation template -- holds the attributes */
/* of the join for the employees attribute of the join */

dbstruct temp6 {
dbchar name [32];
dbclass tempSRVA:collection[tempS];
temp5RVA temp5_rels;

public:
temp6 (char *);
char * get-nameo;
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/* Constructor function code for temp6 */

temp6::temp6 (char * nameAtom) {
dbchar * dest;

dest = name;
while (*dest++ = *nameAtom++);

/* Code for implementing member function of temp6 */

char * temp6::get.name() {
dbchar * source = name;
char * dest = new char[32]"
char * start = dest;

while (*dest++ = *source++);

return (start);

/* LOOPS-JOIN ITERATOR */
/* */

/* This irerator will perform the join of the products relation */
/* to the employees relation and will yield a pointer to the */
/* resultant tuple. (i.e. a pointer to a tuple of type temp6) */

iterator temp6 * loopsrjoin-temp6()

{

/* scan the temp2 relation using filescan iterator */

iterate (temp2 * lefttuple-ptrl = filescan-temp2()
{

/* copy the atomic attributes from left relation into */
/* temp6

temp6 * t6 = new temp6 (left-tuple.ptrl->get-nameo);
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/* set up a reference pointer to descend one level of */
/* nesting in temp6

temp6 & temp6sref = * t6;

/* set up a reference pointer to descend one level of */
/* nesting in the left relation */

temp2 & left-sourcetefl1 = * left-tupleptrl;
*** ** * **** ** *** ** ** *******

/* scan the tempi relation */
** ** *** ** * ***** ** ** ********

iterate (tempi * left-tupleptr2 = left-sourcetef 1.
tempL-rels scano)

{

/* scan the temp3 relation using filescan iterator */
/**************************************** **************

iterate (temp3 * right.tuple-ptrl = filescan-temp3())
{
/*********** *********/*

/* join co,.dition */

if (strcmp (left_tuple-ptr2->getname(, right-tuple.ptri->
getname() == 0)

{

/* copy the atomic attributes from left and right */
/* relations into temp5

tempS * t5 = in (temp6_ref.tempSrels) new temp5

(lef-tuple-ptr2->getname(0,
right-tuple-ptrl->get-nameO);

/* set up a reference pointer to descend one */
/* level of nesting in temp5 */

tempS & temp5_ref = * t5;

se up a reference pointer to descend one
/* level of nesting in right relation */

temp3 & right-sourceref1 = * right.tuple-ptrl;
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/* scan temp3's manufacturers relation *

iterate (manufacturer * rightsuple.ptr2
right-sourcesref 1.manufacturers .r.anC,)

/* copy the atomic attributes from right *
/* relation into temp4

temp4 * t4 = in (tempS-.ref.tempt-rels) new temp4
(right--suple..ptr2->getJ-ocatiunO,
right-.tuple..ptr2->get-.name 0,
right..tupie-.ptr2->getphune 0);

/* yield the joined tuple, which is a po-inter tc' a temp6 *

yield (t6);

MAIN PROGRAM

/* The main program will call the join iterator and print out the *
/* contents of the joined relation. *

main()

iterate (temp6 * left..tuplejptrl = loops-join..temp60)

cout «< form ("employees-.name: %s\n",
left-tuple.ptrl -> get-name0);

temp6 & left-source-.ref I = * left-tuple-ptrl;
iterate (tempS * left-tuple.ptr2 = left-source-ref 1.

tempS..rels .scan 0)

cout «< 5 rm ("toysstoys-name: %sn", left-tuple-ptr2 -

get-toys.name0);
cout «< form ("products.products.name: %s\n", left-tuple.ptr2 -

get..products.name 0);
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tempS & left-.source-.ref 2 =*left-.tuple-.ptr2;
iterate (temp4 * left..tuple-.ptr3 = left-.source-.ref 2.

temp4-rels .scano)

cout << form ("manufacturers-.location: Ys\n",
left-.tikple-.ptr3 -> get.-ocationo);

cout << form (I'manufacturers-name: Zs\n",
left-.tuple-.ptrS -> get-.nameO);

cout << form ("lmanufacturers-.phone: Yd\n",
loft..tuple..ptr3 ->get-.phoneo);

F-13



Appendix G. Store Values Method

The following code implements the storevalues query depicted in Figure 3.8 and

described in Section 3.3.3. In the Triton system, the code would be written to a file called

query.e by the E code generator codegen to implement the query. The comments that

appear in the code in this appendix are not generated by codegen but have been put in by

the author to explain the operation of the storevalues method.

#include <stream.h>
#include <stdio.h>

#ifndef EMPLOYEESH
#include "employees.h"
#endif

extern persistent empRVA employees;

maino
{

/* scan the employee relation */

iterate (emp * left-tupleptrl = employees.scano)
{

/* condition statement */
** *** ** ****** * ** ***

if (strcmp (left.tupleptr->get-nameo,"David") == 0)
{

/* set up a reference pointer to descend oi.e level of .1

/* nesting in employees

emp & left-sourcetef 1 = * leftstupleptrl;

/* scan the children relation */

iterate (child * left.tupleptr2 = left-sourcerefl.
children.scan()

{
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/**** * ** * **************

I* condition statement */

if (strcmp (left-tupleptr2->get-nameo,"Florence") == 0)
{

/* set up a reference pointer to descend one level of */
/* nesting in children

child & left-sourceref2 = * left-tuple-ptr2;

/* insert two new "toy" tuples into toys */

toy * toy-ref = in (left-sourcesref2.toys)
new toy ("car", "black");

toy * toy-ref = in (left-source-ref2.toys)
new toy ("truck", "blue");

}

/* insert a new "project" tuple into projects */

project * projectref = in (left-sourcesrefl.projects)
new project ("AWANA", 384);

}
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Appendix H. Modify Method

The following code implements the modify query depicted in Figure 3.9 and described

in Section 3.3.4. In the Triton system, the code would be written to a file called query.e by

the E code generator codegen to implement the query. The comments that appear in the

code in this appendix are not generated by codegen but have been put in by the :uthor to

explain the operation of the modify method.

#include <stream.h>
#include <stdio.h>

#ifndef EMPLOYEESH
#include "employees.h"
#endif

extern persistent empRVA employees;

maino)
{

/* scan the employee relation */
** ****** ** ******** *** ** *** *****

iterate (emp * lefttupleptrl = employees.scan0)
{
/*********************** **/

/* condition statement */

if (strcmp (lefttupleptr->getname(),"David") == 0)

/* set up a reference pointer to descend one level of */
/* nesting in employees

emp & left-sourcetefl1 = * lefttupleptrl;

,/. scan the children relation */

iterate (child * left-tupleptr2 = lftsourcetefl.
children.scanO)

{
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/* condition statement */
/********* ****&. ***********/

if (strcmp (left-tupleptr2->getname(0,"Flo") == 0)
{

/* invoke member function to change child's age */

left-tupleptr2->change_age (4);

/* set up a reference pointer to descend one */
/* level of nesting in children

child & left-sourceref2 = * left.tuplejptr2;

/* scan the toys relation */

iterate (toy * left-tupleptr3 = left-source-ref2.

toys. scano)
{

/* invoke member function to change */
/* the color of the toys

left-tuple.ptr3->changecolor ("blue");
}

}
}

/* scan the projects relation */

iterate (project * left-tuple.ptr4 = left-sourcerefl.

projects. scan0)
{

/* condition statement */
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if (strcmp (left-tuple-ptr4->get-name(),"BNAD") == 0)
{

/* invoke member function to change */
/* the name of the project

left-tuple-ptr4->change-name ("TROY");
}

}

}

H-3



Appendix I. Delete Method

The following code implements the delete query depicted in Figure 3.10 and described

in Section 3.3.5. In the Triton system, this code is written to a tile called query.e by the E

code generator codegen to implement the query. The comments that appear in the code in

this appendix are not generated by codegen but have been put in by the author to explain

the operation of the delete method.

#include <stream.h>
#include <stdio.h>

#ifndef EMPLOYEESH
#include "employees.h"
#endif

extern persistent empRVA employees;

main 0
{

/* scan the employee relation */

iterate (emp * left-tupleptrl = employees.scan()
{

/* condition statement */

if (strcmp (left-tupleptri->getname(),"David") == 0)
{

/* set up a reference pointer to descend one level of */
/* nesting in employees

emp & left-sourceref1 = * leftstupleptrl;

1. scan the children relation *1

iterate (child * left-tuplep'4r2 = left-sourcetefll.

children. scan0)
{



/* condition statement */
*****~* * * **************

if (strcmp (left-tuple-ptr2->getname(),"Flo") == 0)
{

/* set up a reference pointer to descend one level of */
/* nesting in children

child & left-sourceref2 = * lefttupleptr2;

/* scan the toys relation */
/** **** ** *** ***** *** ***** *

iterate (toy * left-tupleptr3 = left-source-ref2.toys.scano)
{

/* delete the toy tuple */
/****** ******* ** *******/

delete left-tupleptr3;
}

/* scan the projects relation */

iterate (project * left-tuple-ptr4 = left-source-refl.projects.scano)

{

/* delete the project tuple */

delete left.tuple.ptr4;
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Appendix J. SQL/NF Create Table Definition for the Relational Version of the

IDEFo Language Data

The SQL/NF statements to create the schema for the relational version of the IDEF0

language data are as follows:

CREATE TABLE act2act-table (
parent-node INT 4,
child-node INT 4)

CREATE TABLE act2data-table (
nodeid INT 4,
data-id INT 4,
icom.type CHAR 2)

CREATE TABLE act2hist-table (
node_id INT 4,
hist-id INT 4)

CREATE TABLE act2ref-table C
node_id INT 4,
ref-id INT 4)

CREATE TABLE activity-table (
node_id INT 4,
node CHAR 21,
name CHAR 26,
projectid INT 4,
author-id INT 2,
version CHAR 11,
date CHAR 9,
x INT 2,
y INT 2,
visibleDRE INT 1,
sheet-id INT 4)

CREATE TABLE act-changes-table C
nodeid INT 4,
changes CHAR 61)

CREATE TABLE act-descr-table C
nodeid INT 4,
lineno INT 2,
desciine CHAR 61)

CREATE TABLE alias-table (
dataid INT 4,
name CHAR 26,
where-used CHAR 26,
comment CHAR 26)
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CREATE TABLE analyst-table (
author-id INT 2,
author CHAR 21)

CREATE TABLE arrow-table C
symbol-id INT 4,
arrow-type INT 1)

CREATE TABLE boundary-table (
symbol-id INT 4,
icomNcode CHAR 3)

CREATE TABLE data2data-table (
parent.data INT 4,
child-data INT 4)

CREATE TABLE data2label-table C
dataid INT 4,
label-id INT 4)

CREATE TABLE data2ref-table C
data.id INT 4,
ref-id INT 4)

CREATE TABLE data2valuetable C
data-id INT 4,
value-id INT 4)

CREATE TABLE data-changes-table C
data-id INT 4,
changes CHAR 61)

CREATE TABLE data-descr-table (
dataid INT 4,
line-no INT 2,
desc-line CHAR 61)

CREATE TABLE data-elem-table C
dataid INT 4,
name CHAR 26,
project-id INT 4,
author-id INT 2,
version CHAR 11,
date CHAR 9)

CREATE TABLE data-range-table C
data-id INT 4,
range-data CHAR 61)

CREATE TABLE data-type-table C
data-id INT 4,
type CHAR 26)

CREATE TABLE data-value-tablel C
value-id INT 4,
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value CHAR 16)

CREATE TABLE dot-table (
symbol_id INT 4,
dot-type INT 1)

CREATE TABLE footnote-table C
grafid INT 4,
x INT 2,
y INT 2)

CREATE TABLE feo-table (

graf_id INT 4,
picture CHAR 61)

CREATE TABLE graphics-table (
grafid INT 4,
sheet-id INT 4)

CREATE TABLE hist-call-table C
hist_id INT 4,
hist-proj CHAR 21,
hist-node CHAR 13)

CREATE TABLE label-table (
labelid INT 4,
name CHAR 11,
x INT 2,
y INT 2,
sheet-id INT 4)

CREATE TABLE min-max-table (
dataid INT 4,
minimum CHAR 16,
maximum CHAR 16)

CREATE TABLE note-table (
grafid INT 4,
label INT 2,
x INT 2,
y INT 2)

CREATE TABLE note-text-table C
graf_id INT 4,
lineno INT 2,
text-line CHAR 61)

CREATE TABLE project-table (

projectid INT 4,
name CHAR 13)

CREATE TABLE reference-table C
ref_id INT 4,
lineno INT 2,
ref-line CHAR 61)
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CREATE TABLE ref-type-table (
refid INT 4,
type-.ef CHAR 26)

CREATE TABLE segment-table (
segid INT 4,
dataid INT 4,
sheetid INT 4,
xs INT 2,
ys INT 2,
xe INT 2,
ye INT 2)

CREATE TABLE sheet-table C
sheet-id INT 4,
c-number INT 4)

CREATE TABLE squiggle-table (
grafid INT 4,
xl INT 2,
yl INT 2,
x2 INT 2,
y2 INT 2,
x3 INT 2,
y3 INT 2,
x4 INT 2,
y4 INT 2)

CREATE TABLE tunnel-table (
symbolid INT 4,
segid INT 4,
sheetid INT 4,
x INT 2,
y INT 2)

CREATE TABLE to-from-all..table C
symbolid INT 4,
tfa-label CHAR 2)

CREATE TABLE symbol-table C
symbol_id INT 4,
tunnel-type INT 1)

CREATE TABLE turn-table (
symbolid INT 4,
turn-type INT 1,
nodeid INT 4,
hist-id INT 4)
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Appendix K. SQL/NF Create Table Definition for the Nested Version of the

IDEFo Language Data

The SQL/NF statement to create the schema for the nested version of the IDEFo

language data is as follows:

CREATE TABLE projects (
project-name CHAR 13,
TABLE activities (

node.id INT 4,
node CHAR 21,

name CHAR 26,
author CHAR 21,

version CHAR 11,
date CHAR 9,
changes CHAR 61,
c-number INT 4,
parent CHAR 26,
TABLE act-descr (

line-no INT 2,
desc.line CHAR 61),

TABLE references (
ref.type CHAR 26,
TABLE ref-lines (

line.no INT 2,
line-ref CHAR 61)),

TABLE hist-calls (
hist-proj CHAR 13,

hist-node CHAR 21),
TABLE data-elems (

dataname CHAR 26,
icom-type CHAR 2),

TABLE children (

node-name CHAR 26),
TABLE data-elements (

data-id INT 4,

name CHAR 26,
author CHAR 21,
version CHAR 11,
date CHAR 9,

changes CHAR 61,
parent CHAR 26,
TABLE data-descr C

line-no INT 2,
desc-line CHAR 61),

TABLE references (
ref-type CHAR 26,
TABLE ref-lines (

lineno INT 2,
lineref CHAR 61)),
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TABLE aliases (
name CHAR 26,
whereused CHAR 26,
comment CHAR 26),

TABLE min-maxei (
data.type CHAR 26,
minimum CHAR 16,
maximum CHAR 16),

TABLE ranges (
data-type CHAR 26,
range-val CHAR 61),

TABLE values (
data.type CHAR 26,
actual-value CHAR 16),

TABLE activities (
node-name CHAR 26,
icom-type CHAR 2),

TABLE children (
data-name CHAR 26)),

TABLE sheets (
c-number INT 4,
node CHAR 21,

name CHAR 26,
author CHAR 21,
version CHAR 11,
date CHAR 9,

TABLE boxes (
node CNAR 21,

name CHAR 26,
x INT 2
y INT 2,
visible-dre INT 2),

TABLE segments (

data-id INT 4,

TABLE location C
xs INT 2,
ys INT 2,
xe INT 2,
ye INT 2),

TABLE symbols C
x INT 2,
y INT 2,
symbol-type CHAR 26,
type-symbol CHAR 26)),

TABLE squiggles C
xl INT 2,
yl INT 2,
x2 INT 2,
y2 INT 2,
x3 iHT 2,
y3 INT 2,
x4 INT 2,
y4 INT 2),

TABLE meta-notes C
label CHAR 2.
x INT 2,
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y INT 2,
TABLE note-texts (

line-no INT 2,
text-line CHAR 61)),

TABLE foot-notes (
label INT 2,
xm INT 2,
ym INT 2,
xn INT 2,
yn INT 2,
TABLE note-texts C

line-no INT 2,
text-line CHAR 61)),

TABLE feos (
label CHAR 2,
x INT 2,
y INT 2,
picture CHAR 61),

TABLE labels (
data-id INT 4,
name CHAR 11,
x INT 2,
y INT 2)))
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